• Title/Summary/Keyword: Research trajectory

Search Result 803, Processing Time 0.025 seconds

Vehicle Crash Simulation using Trajectory Optimization (경로 최적화 알고리즘을 이용한 3차원 차량 충돌 시뮬레이션)

  • Seong, Jin-Wook;Ko, Seung-Wook;Kwon, Tae-Soo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.11-19
    • /
    • 2015
  • Our research introduces a novel system for creating 3D vehicle animation. Our system is for intuitively authoring vehicle accident scenes according to videos or based on user-drawn trajectories. Our system has been implemented by combining three existing ideas. The first part is for obtaining 3D trajectory of a vehicle from black-box videos. The second part is a tracking algorithm that controls a vehicle to follow a given trajectory with small errors. The last part optimizes the vehicle control parameters so that the error between the input trajectory and simulated vehicle trajectory is minimized. We also simulate the deformation of the car due to an impact to achieve believable results in real-time.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Exploring Latent Trajectory Classes of Change in Depression Measured Using CES-D (CES-D로 측정한 우울증상 변화궤적의 잠재계층 탐색 -GMM을 활용한 한국복지패널 데이터의 재분석-)

  • Hoe, Maanse
    • Korean Journal of Social Welfare
    • /
    • v.66 no.1
    • /
    • pp.307-331
    • /
    • 2014
  • The purpose of the present study was to explore latent trajectory classes in the longitudinal change of depression measured using CES-D. The study data was extracted from the Korea Welfare Panel Study Data collected from 2006 to 2010. It consisted of 8,900 adults with aged over 19. Growth Mixture Modeling(GMM) was used to explore possible latent trajectory classes in the change of depression over time. The major findings of the present study were as follows. First, there were five latent trajectory classes in the longitudinal change of depression. Second, there were 4 latent trajectory classes of depression for people in a non-poverty group, while there were 3 latent trajectory classes of depression for people in a poverty group. These findings lead to three conclusions. First, 12.1% of the sample shows that their depression level increases over time. Second, the previous research findings of decreased depression over time might be caused by the combination of two latent trajectory classes(a low level depression sustain group and a depression decrease group). Lastly, the latent trajectory classes in the longitudinal change of depression, which are found in the present study, might be caused by interactions among depression, age, and poverty status.

  • PDF

Enhanced Grid-Based Trajectory Cloaking Method for Efficiency Search and User Information Protection in Location-Based Services (위치기반 서비스에서 효율적 검색과 사용자 정보보호를 위한 향상된 그리드 기반 궤적 클로킹 기법)

  • Youn, Ji-Hye;Song, Doo-Hee;Cai, Tian-Yuan;Park, Kwang-Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.8
    • /
    • pp.195-202
    • /
    • 2018
  • With the development of location-based applications such as smart phones and GPS navigation, active research is being conducted to protect location and trajectory privacy. To receive location-related services, users must disclose their exact location to the server. However, disclosure of users' location exposes not only their locations but also their trajectory to the server, which can lead to concerns of privacy violation. Furthermore, users request from the server not only location information but also multimedia information (photographs, reviews, etc. of the location), and this increases the processing cost of the server and the information to be received by the user. To solve these problems, this study proposes the EGTC (Enhanced Grid-based Trajectory Cloaking) technique. As with the existing GTC (Grid-based Trajectory Cloaking) technique, EGTC method divides the user trajectory into grids at the user privacy level (UPL) and creates a cloaking region in which a random query sequence is determined. In the next step, the necessary information is received as index by considering the sub-grid cell corresponding to the path through which the user wishes to move as c(x,y). The proposed method ensures the trajectory privacy as with the existing GTC method while reducing the amount of information the user must listen to. The excellence of the proposed method has been proven through experimental results.

A study on the taping techniques of functional golf inner-wear for improving golf swing trajectory & shot distance (골프 스윙궤적 및 비거리 향상을 위한 기능성 골프 이너웨어의 테이핑 기법 연구)

  • Jungwoo Kim
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • The purpose of this study was to develop the Functional golf inner-wear by preventing the injuries and enhancing the performance of the Golf swing by checking the influence of the wearing of the functional golf inner-wear considering golf characteristics on the Swing trajectory and Shot distance. Functional inner-wear effective for golf swing was manufactured using the sports taping method. Changes in driver and iron swing before and after wearing the functional golf inner-wear manufactured in this way were measured using trackman equipment. Measurement variables were limited to Club Speed, Attack Angle, Club Path, Ball Speed, Smash Factor, and Priority. Before and after wearing functional golf inner-wear, there were statistically significant differences in driver club speed, iron club speed, driver etch angle, iron club pass, driver ball speed, driver smash factor, iron smash factor, driver carry, iron carry, and right shoulder joint proprioceptive sensory ability. As a result, functional golf inner-wear is effective for ball speed, impact, and carry by increasing club speed and efficient swing. Future research will focus on the development of functional golf that can improve the swing ability in a short game that plays an important role in the golf game through various sports taping grafting technique, textile, special material, film, Research on functional golf inner-wear.

Disturbance Observer and Error Model-based Control of Ball Screw Drives

  • Cho, Chang-Nho;Lee, Chang-Hyuk;Kim, Hong-Ju
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.435-445
    • /
    • 2019
  • Ball screw drives are widely used in industry, and many studies have been devoted on precise, fast and robust control of ball screw drives. In this study, a novel position control algorithm for ball screw drives is proposed, which consist of a PD controller, a friction feedforward and a disturbance observer. The dynamics and the position error of such controller are analyzed to establish an error model, which can be used to predict the resulting position error of the given desired trajectory. Using the proposed error model, the desired trajectory can be modified so that the predicted position error can be compensated in a feedforward manner. The proposed algorithm does not require the model of the system for the error prediction, and thus can be easily applied to conventional control systems. The performance of the system is verified through simulations and experiments.

Determining Whether to Enter a Hazardous Area Using Pedestrian Trajectory Prediction Techniques and Improving the Training of Small Models with Knowledge Distillation (보행자 경로 예측 기법을 이용한 위험구역 진입 여부 결정과 Knowledge Distillation을 이용한 작은 모델 학습 개선)

  • Choi, In-Kyu;Lee, Young Han;Song, Hyok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1244-1253
    • /
    • 2021
  • In this paper, we propose a method for predicting in advance whether pedestrians will enter the hazardous area after the current time using the pedestrian trajectory prediction method and an efficient simplification method of the trajectory prediction network. In addition, we propose a method to apply KD(Knowledge Distillation) to a small network for real-time operation in an embedded environment. Using the correlation between predicted future paths and hazard zones, we determined whether to enter or not, and applied efficient KD when learning small networks to minimize performance degradation. Experimentally, it was confirmed that the model applied with the simplification method proposed improved the speed by 37.49% compared to the existing model, but led to a slight decrease in accuracy. As a result of learning a small network with an initial accuracy of 91.43% using KD, It was confirmed that it has improved accuracy of 94.76%.

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.

A Path Planning for Autonomous Excavation Based on Energy Function Minimization (에너지 함수 최적화를 통한 무인 굴삭 계획)

  • Park, Hyong-Ju;Bae, Jang-Ho;Hong, Dae-Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.76-83
    • /
    • 2010
  • There have been many studies regarding development of autonomous excavation system which is helpful in construction sites where repetitive jobs are necessary. Unfortunately, bucket trajectory planning was excluded from the previous studies. Since, the best use of excavator is to dig efficiently; purpose of this research was set to determine an optimized bucket trajectory in order to get best digging performance. Among infinite ways of digging any given path, criterion for either optimal or efficient bucket moves is required to be established. One method is to adopt work know-how from experienced excavator operator; However the work pattern varies from every worker to worker and it is hard to be analyzed. Thus, other than the work pattern taken from experienced operator, we developed an efficiency model to solve this problem. This paper presents a method to derive a bucket trajectory from optimization theory with empirical CLUB soil model. Path is greatly influenced by physical constraints such as geometry, excavator dimension and excavator workspace. By minimizing a energy function under these constraints, an optimal bucket trajectory could be obtained.

Geometric Design of Bus Bay Based on Vehicle Trajectory Analysis (차량 이동궤적 기반 버스정차대 기하구조 연구)

  • Kim, Yong Seok;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.33-36
    • /
    • 2015
  • PURPOSES : It is desirable for buses to be parallel to the face of the bus shelter at a bus stop. In this way, passengers can safely use the buses without moving into the vehicle area. The study was a review of the current bus bay geometric guidelines, to determine whether they lead buses to stop parallel to the face of the bus shelter by analyzing vehicle trajectory. METHODS : A commercial software program for vehicle trajectory analysis was used under our assumptions about bus dimensions and geometric values. The final position of the bus was analyzed for multiple trajectory simulations, reflecting various geometric alternatives. RESULTS : Within the scope of the study, we concluded that the current design guidelines need to be revised by the design values suggested by the study. CONCLUSIONS : The results of the study suggested alternative design values for bus bay geometry, based on the assumption that buses should be parallel to the face of the bus shelter in order to prevent passengers from moving into the vehicle area.