• Title/Summary/Keyword: Research Field Code

Search Result 336, Processing Time 0.021 seconds

THE CUPID CODE DEVELOPMENT AND ASSESSMENT STRATEGY

  • Jeong, J.J.;Yoon, H.Y.;Park, I.K.;Cho, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.636-655
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been being developed for the realistic analysis of transient two-phase flows in nuclear reactor components. The CUPID code development was motivated from very practical needs, including the analyses of a downcomer boiling, a two-phase flow mixing in a pool, and a two-phase flow in a direct vessel injection system. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations are solved over unstructured grids with a semi-implicit two-step method. This paper presents an overview of the CUPID code development and assessment strategy. It also presents the code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER.

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.

Research Trend Analysis for Sustainable QR code use - Focus on Big Data Analysis

  • Lee, Eunji;Jang, Jikyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3221-3242
    • /
    • 2021
  • The purpose of the study is to examine the current study trend of 'QR code' and suggest a direction for the future study of big data analysis: (1) Background: study trend of 'QR code' and analysis of the text by subject field and year; (2) Methodology: data scraping and collection, EXCEL summary, and preprocess and big data analysis by R x 64 4.0.2 program package; (3) the findings: first, the trend showed a continuous increase in 'QR code' studies in general and the findings were applied in various fields. Second, the analysis of frequent keywords showed somewhat different results by subject field and year, but the overall results were similar. Third, the visualization of the frequent keywords also showed similar results as that of frequent keyword analysis; and (4) the conclusions: in general, 'QR code' studies are used in various fields, and the trend is likely to increase in the future as well. And the findings of this study are a reflection that 'QR code' is an aspect of our social and cultural phenomena, so that it is necessary to think that 'QR code' is a tool and an application of information. An expansion of the scope of the analysis is expected to show us more meaningful indications on 'QR code' study trends and development potential.

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

A Study on EUROFIX Reed Solomon Code Design Using Finite Galois Field Fourier Transformation (유한체 푸리에 변환을 이용한 EUROFIX RS Code 설계에 관한 연구)

  • Kim, Min-Jee;Kim, Min-Jung;Chung, Se-Mo;Cho, Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • This paper deals with Reed-Solomon Coding for EUROFIX system EUROFIX is an integrated navigation and communication system, which combines Differential GNSS and Loran-C EUROFIX transmits DGNSS(Differential Global Navigation Satellite Systems) (data by pulse position modulation of Loran-C pulses. Loran-C system is regarded as a satellite backup system in recent. And now, it is important to detect and correct much errors in communication systems. Error corrections or correction algorithm is actively studied nowadays because of this. In this paper, we study and design encoder and decoder of Reed Solomon Code using Finite Galois Field Fourier Transformation for error corrections in EUROFIX data transmission. Through extensive simulation, the designed Reed Solomon code is shown to be effective for error correction in EUROFIX data transmission.

DEVELOPMENT OF A WALL-TO-FLUID HEAT TRANSFER PACKAGE FOR THE SPACE CODE

  • Choi, Ki-Yong;Yun, Byong-Jo;Park, Hyun-Sik;Kim, Hee-Dong;Kim, Yeon-Sik;Lee, Kwon-Yeong;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1143-1156
    • /
    • 2009
  • The SPACE code that is based on a multi-dimensional two-fluid, three-field model is under development for licensing purposes of pressurized water reactors in Korea. Among the participating research and industrial organizations, KAERI is in charge of developing the physical models and correlation packages for the constitutive equations. This paper introduces a developed wall-to-fluid heat transfer package for the SPACE code. The wall-to-fluid heat transfer package consists of twelve heat transfer subregions. For each sub-region, the models in the existing safety analysis codes and the leading models in literature have been peer reviewed in order to determine the best models which can easily be applicable to the SPACE code. Hence a wall-to-fluid heat transfer region selection map has been developed according to the non-condensable gas quality, void fraction, degree of subcooling, and wall temperature. Furthermore, a partitioning methodology which can take into account the split heat flux to the continuous liquid, entrained droplet, and vapor fields is proposed to comply fully with the three-field formulation of the SPACE code. The developed wall-to-fluid heat transfer package has been pre-tested by varying the independent parameters within the application range of the selected correlations. The smoothness between two adjacent heat transfer regimes has also been investigated. More detailed verification work on the developed wall-to-fluid heat transfer package will be carried out when the coupling of a hydraulic solver with the constitutive equations is brought to completion.

COMPONENT AND SYSTEM MULTI-SCALE DIRECT-COUPLED CODE IMPLEMENTATION USING CUPID AND MARS CODES (CUPID 코드와 MARS 코드를 이용한 기기/계통 다중스케일 연계 해석 코드 구현)

  • Park, I.K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.89-97
    • /
    • 2016
  • In this study, direct code coupling, in which two codes share a single flow field, was conducted using 3-dimensional high resolution thermal hydraulics code, CUPID and 1-dimensional system analysis code, MARS. This approach provide the merit to use versatile capability of MARS for nuclear power plants and 3-dimensional T/H analysis capability of CUPID. Numerical Method to directly couple CUPID and MARS was described in this paper. The straight flow and manometer flow oscillation were calculated to verify conservation of coupled CUPID/MARS code in mass, momentum, and energy. This verification calculations indicates that the CUPID/MARS is coupled appropriately in numerical aspect and the coupled code can be applied to nuclear reactor thermal hydraulics after validation against integral transient experiments.

A Research Analysis of QR code based on big data in Korea

  • Lee, Eun-ji;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.189-200
    • /
    • 2021
  • Recently, Information and Communication Technology and SMART Phone Technology have been rapidly developed. According to the increase of data use, the era of big data has come. With the approach of non-contact society, QR Codes are becoming inseparable in our lives. In this paper, we are trying to figure out the implications of QR Code research based on Big Data in Korea. The purpose of this study is to first examine the previous studies on "QR Code" and conduct an analysis on keywords by field using Big Data. Second, for data visualization WordCloud analysis and network analysis are performed on "QR Code" frequent keyword. Third, we would like to present the research direction to future researchers regarding "QR Code". In the results, First of all, research trends showed that research is on the rise and that various fields are being utilized. Second, the results of the analysis of frequent keyword resulted in similar results overall, with some differences depending on the field and year. Third, we found that the visualization results according to the frequent keyword were also analyzed in the same way as the frequent keyword analysis results. The practical implications of the theoretical findings are as follows. First, 'QR Code' needs to be studied as a means of information delivery, not as a technical aspect. Second, it can be seen that "QR Code" is developing reflecting social trends or issues. With both theoretical and practical implications, we are trying to provide the strategic ways of QR-code in future.

Fully parallel low-density parity-check code-based polar decoder architecture for 5G wireless communications

  • Dinesh Kumar Devadoss;Shantha Selvakumari Ramapackiam
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.485-500
    • /
    • 2024
  • A hardware architecture is presented to decode (N, K) polar codes based on a low-density parity-check code-like decoding method. By applying suitable pruning techniques to the dense graph of the polar code, the decoder architectures are optimized using fewer check nodes (CN) and variable nodes (VN). Pipelining is introduced in the CN and VN architectures, reducing the critical path delay. Latency is reduced further by a fully parallelized, single-stage architecture compared with the log N stages in the conventional belief propagation (BP) decoder. The designed decoder for short-to-intermediate code lengths was implemented using the Virtex-7 field-programmable gate array (FPGA). It achieved a throughput of 2.44 Gbps, which is four times and 1.4 times higher than those of the fast-simplified successive cancellation and combinational decoders, respectively. The proposed decoder for the (1024, 512) polar code yielded a negligible bit error rate of 10-4 at 2.7 Eb/No (dB). It converged faster than the BP decoding scheme on a dense parity-check matrix. Moreover, the proposed decoder is also implemented using the Xilinx ultra-scale FPGA and verified with the fifth generation new radio physical downlink control channel specification. The superior error-correcting performance and better hardware efficiency makes our decoder a suitable alternative to the successive cancellation list decoders used in 5G wireless communication.

Wire-wrap Models for Subchannel Blockage Analysis

  • Ha K.S.;Jeong H.Y.;Chang W.P.;Kwon Y.M.;Lee Y.B.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.165-174
    • /
    • 2004
  • The distributed resistance model has been recently implemented into the MATRA-LMR code in order to improve its prediction capability over the wire-wrap model for a flow blockage analysis in the LMR. The code capability has been investigated using experimental data observed in the FFM (Fuel Failure Mock-up)-2A and 5B for two typical flow conditions in a blocked channel. The predicted results by the MATRA-LMR with a distributed resistance model agreed well with the experimental data for wire-wrapped subchannels. However, it is suggested that the parameter n in the distributed resistance model needs to be calibrated accurately for a reasonable prediction of the temperature field under a low flow condition. Finally, the analyses of a blockage for the assembly of the KALIMER design are performed. Satisfactory results by the MATRA-LMR code were obtained through and rerified a comparison with results of the SABRE code.