• 제목/요약/키워드: Research Field Code

검색결과 336건 처리시간 0.024초

THE CUPID CODE DEVELOPMENT AND ASSESSMENT STRATEGY

  • Jeong, J.J.;Yoon, H.Y.;Park, I.K.;Cho, H.K.
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.636-655
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been being developed for the realistic analysis of transient two-phase flows in nuclear reactor components. The CUPID code development was motivated from very practical needs, including the analyses of a downcomer boiling, a two-phase flow mixing in a pool, and a two-phase flow in a direct vessel injection system. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations are solved over unstructured grids with a semi-implicit two-step method. This paper presents an overview of the CUPID code development and assessment strategy. It also presents the code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER.

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.

Research Trend Analysis for Sustainable QR code use - Focus on Big Data Analysis

  • Lee, Eunji;Jang, Jikyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3221-3242
    • /
    • 2021
  • The purpose of the study is to examine the current study trend of 'QR code' and suggest a direction for the future study of big data analysis: (1) Background: study trend of 'QR code' and analysis of the text by subject field and year; (2) Methodology: data scraping and collection, EXCEL summary, and preprocess and big data analysis by R x 64 4.0.2 program package; (3) the findings: first, the trend showed a continuous increase in 'QR code' studies in general and the findings were applied in various fields. Second, the analysis of frequent keywords showed somewhat different results by subject field and year, but the overall results were similar. Third, the visualization of the frequent keywords also showed similar results as that of frequent keyword analysis; and (4) the conclusions: in general, 'QR code' studies are used in various fields, and the trend is likely to increase in the future as well. And the findings of this study are a reflection that 'QR code' is an aspect of our social and cultural phenomena, so that it is necessary to think that 'QR code' is a tool and an application of information. An expansion of the scope of the analysis is expected to show us more meaningful indications on 'QR code' study trends and development potential.

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

유한체 푸리에 변환을 이용한 EUROFIX RS Code 설계에 관한 연구 (A Study on EUROFIX Reed Solomon Code Design Using Finite Galois Field Fourier Transformation)

  • 김민지;김민정;정세모;조형래
    • 한국항해항만학회지
    • /
    • 제28권1호
    • /
    • pp.23-29
    • /
    • 2004
  • 본 논문은 EUROFIX 시스템에 적용하기 위한 Reed-Solomon 코딩에 대해서 다룬다. EUROFIX는 최근에 위성시스템의 비상수단으로서 인식되는 LORAN-C 시스템을 이용하여 DGNSS(Differential Global Navigation Satellite Systems) 정보를 전송하는 통합위치결정 시스템으로서, LORAN-C 신호 펄스열들의 펄스 위치 변조에 의한 LORAN-C 전송을 통해서 데이터 통신을 한다. 또한 통신 시스템에서 처리되는 광대한 양의 데이터에 대한 오류론 제어하기 위한 수단으로 오류 정정 부호나 정정 알고리즘이 대두되었으며, 실제로 중요한 적용요소가 되고 있다. 이에 따라 본 논문에서는 EUROFIX 정보전송의 부호화과정에서의 오류정정을 위해서 유한체 푸리에 변환을 이용한 Reed-Solomon 코드의 부호화 및 복호화에 대해서 연구하였다. 시뮬레이션을 통해서, EUROFIX 정보전송의 오류정정에 효과적인 것을 알 수 있었다.

DEVELOPMENT OF A WALL-TO-FLUID HEAT TRANSFER PACKAGE FOR THE SPACE CODE

  • Choi, Ki-Yong;Yun, Byong-Jo;Park, Hyun-Sik;Kim, Hee-Dong;Kim, Yeon-Sik;Lee, Kwon-Yeong;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • 제41권9호
    • /
    • pp.1143-1156
    • /
    • 2009
  • The SPACE code that is based on a multi-dimensional two-fluid, three-field model is under development for licensing purposes of pressurized water reactors in Korea. Among the participating research and industrial organizations, KAERI is in charge of developing the physical models and correlation packages for the constitutive equations. This paper introduces a developed wall-to-fluid heat transfer package for the SPACE code. The wall-to-fluid heat transfer package consists of twelve heat transfer subregions. For each sub-region, the models in the existing safety analysis codes and the leading models in literature have been peer reviewed in order to determine the best models which can easily be applicable to the SPACE code. Hence a wall-to-fluid heat transfer region selection map has been developed according to the non-condensable gas quality, void fraction, degree of subcooling, and wall temperature. Furthermore, a partitioning methodology which can take into account the split heat flux to the continuous liquid, entrained droplet, and vapor fields is proposed to comply fully with the three-field formulation of the SPACE code. The developed wall-to-fluid heat transfer package has been pre-tested by varying the independent parameters within the application range of the selected correlations. The smoothness between two adjacent heat transfer regimes has also been investigated. More detailed verification work on the developed wall-to-fluid heat transfer package will be carried out when the coupling of a hydraulic solver with the constitutive equations is brought to completion.

CUPID 코드와 MARS 코드를 이용한 기기/계통 다중스케일 연계 해석 코드 구현 (COMPONENT AND SYSTEM MULTI-SCALE DIRECT-COUPLED CODE IMPLEMENTATION USING CUPID AND MARS CODES)

  • 박익규
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.89-97
    • /
    • 2016
  • In this study, direct code coupling, in which two codes share a single flow field, was conducted using 3-dimensional high resolution thermal hydraulics code, CUPID and 1-dimensional system analysis code, MARS. This approach provide the merit to use versatile capability of MARS for nuclear power plants and 3-dimensional T/H analysis capability of CUPID. Numerical Method to directly couple CUPID and MARS was described in this paper. The straight flow and manometer flow oscillation were calculated to verify conservation of coupled CUPID/MARS code in mass, momentum, and energy. This verification calculations indicates that the CUPID/MARS is coupled appropriately in numerical aspect and the coupled code can be applied to nuclear reactor thermal hydraulics after validation against integral transient experiments.

A Research Analysis of QR code based on big data in Korea

  • Lee, Eun-ji;Kim, Soo Kyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권9호
    • /
    • pp.189-200
    • /
    • 2021
  • 최근에 정보기술과 스마트폰 기술이 빠르게 발달되고 있다. 데이터가 증가함에 따라 빅데이터 시대에 도달하였다. 최근 언택트 시대가 도래함에 따라 QR코드는 우리 생활에서 밀접하게 운영되고 있다. 본 연구의 목적은 첫째, "QR Code"에 대한 선행연구를 살펴보고 분야별 키워드에 대한 분석을 실시한다. 둘째, 빅데이터 관점에서 데이터시각화를 위해 "QR Code"의 빈출키워드를 대상으로 워드클라우드 분석과 네트워크 분석을 실시한다. 셋째, "QR Code" 관련하여 향후 연구자들에게 연구방향을 제시하고자 한다. 분석결과 첫째, 연구동향을 살펴본 결과 연구가 증가추세에 있으며, 분야가 다양하게 활용되고 있음을 알 수 있었다. 둘째, 빈출 키워드 분석결과 전반적으로 유사한 결과가 도출되었으며, 분야별, 연도별에 따라 일부 차이가 있는 것으로 분석되었다. 셋째, 빈출 키워드에 따른 시각화 결과 역시 빈출 키워드 분석결과와 동일하게 분석되었다는 것을 알 수 있었다. 이론적 연구결과에 따른 실무적 시사점은 다음과 같다. 첫째, 'QR Code'를 기술적인 측면이 아닌 정보전달의 수단으로 연구될 필요가 있다. 둘째, "QR Code"는 사회 경향이나 이슈들을 반영하여 발전하고 있다는 것을 알 수 있다. 이론적 시사점과 실무적 시사점을 통해 우리는 QR 코드에 대한 방향성을 전략적으로 제공해주고자 한다.

Fully parallel low-density parity-check code-based polar decoder architecture for 5G wireless communications

  • Dinesh Kumar Devadoss;Shantha Selvakumari Ramapackiam
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.485-500
    • /
    • 2024
  • A hardware architecture is presented to decode (N, K) polar codes based on a low-density parity-check code-like decoding method. By applying suitable pruning techniques to the dense graph of the polar code, the decoder architectures are optimized using fewer check nodes (CN) and variable nodes (VN). Pipelining is introduced in the CN and VN architectures, reducing the critical path delay. Latency is reduced further by a fully parallelized, single-stage architecture compared with the log N stages in the conventional belief propagation (BP) decoder. The designed decoder for short-to-intermediate code lengths was implemented using the Virtex-7 field-programmable gate array (FPGA). It achieved a throughput of 2.44 Gbps, which is four times and 1.4 times higher than those of the fast-simplified successive cancellation and combinational decoders, respectively. The proposed decoder for the (1024, 512) polar code yielded a negligible bit error rate of 10-4 at 2.7 Eb/No (dB). It converged faster than the BP decoding scheme on a dense parity-check matrix. Moreover, the proposed decoder is also implemented using the Xilinx ultra-scale FPGA and verified with the fifth generation new radio physical downlink control channel specification. The superior error-correcting performance and better hardware efficiency makes our decoder a suitable alternative to the successive cancellation list decoders used in 5G wireless communication.

Wire-wrap Models for Subchannel Blockage Analysis

  • Ha K.S.;Jeong H.Y.;Chang W.P.;Kwon Y.M.;Lee Y.B.
    • Nuclear Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.165-174
    • /
    • 2004
  • The distributed resistance model has been recently implemented into the MATRA-LMR code in order to improve its prediction capability over the wire-wrap model for a flow blockage analysis in the LMR. The code capability has been investigated using experimental data observed in the FFM (Fuel Failure Mock-up)-2A and 5B for two typical flow conditions in a blocked channel. The predicted results by the MATRA-LMR with a distributed resistance model agreed well with the experimental data for wire-wrapped subchannels. However, it is suggested that the parameter n in the distributed resistance model needs to be calibrated accurately for a reasonable prediction of the temperature field under a low flow condition. Finally, the analyses of a blockage for the assembly of the KALIMER design are performed. Satisfactory results by the MATRA-LMR code were obtained through and rerified a comparison with results of the SABRE code.