• 제목/요약/키워드: Requirement Creep

검색결과 16건 처리시간 0.01초

요구사항 변경이 확정가 프로젝트 계획에 미치는 영향 (The Effect of Requirement Creep on the Fixed-Cost Project Planning)

  • 이상운
    • 정보처리학회논문지D
    • /
    • 제14D권6호
    • /
    • pp.641-648
    • /
    • 2007
  • 요구사항이 빈번히 변경되는 동적 비즈니스 시스템 프로젝트를 확정가로 개발할 경우, 개발과정에서 발생하는 요구사항의 변경에 따른 추가 소요 비용으로 인해 확정가 범위 이내로 개발을 완료하는 것은 거의 불가능하다. 확정가 범위 이내에서 성공적으로 프로젝트를 완료하기 위해서는 요구사항 변경 규모와 이에 기반하여 개발이 되지 않아도 되는 옵션 요구사항의 비율을 관리하여야 한다. 이에 대해 Bhagwat는 요구사항 변경이 구축단계에서만 발생한다고 한정하였다. 또한, 소프트웨어 개발비용, 구축단계 소요 비용과 요구사항 변경에 소요되는 추가 비용이 동일하다고 가정함으로써 요구사항 변경 비율과 옵션 요구사항의 비율 유도의 모순을 보였다. 본 논문은 요구사항 변경은 정련단계와 구축단계에서 발생한다고 가정하였다. 또한, 소프트웨어 개발비용, 구축단계 소요 비용과 요구사항 변경 비용간에는 차이가 발생한다고 가정하였다. 그 결과 확정가 대비 요구사항 변경에 따른 추가 소요 비용과 개발이 되지 않아도 되는 옵션 요구사항의 비율도 보다 현실성을 반영하는 결과를 얻을 수 있었다.

Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge

  • Yang, Meng-Gang;Cai, C.S.;Chen, Yong
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.111-129
    • /
    • 2015
  • This paper first presents an experimental study of twelve specimens for their creep performance, including nine concrete-filled steel tubular (CFST) columns and three plain concrete columns, subjected to three levels of sustained axial loads for 1710 days. Then, the creep strain curves are predicted from the existing creep models including the ACI 209 model, the MC 78 model, and the MC 90 model, and further a fitted creep model is obtained by experimental data. Finally, the creep effects of a CFST arch bridge are analyzed to compare the accuracy of the existing creep models. The experimental results show that the creep strains in CFST specimens are far less than in the plain concrete specimens and still increase after two years. The ACI 209 model outperforms the MC 78 model and the MC 90 model when predicting the creep behavior of the CFST specimens. Analysis results indicate that the creep effects in the CFST arch bridge are significant. The deflections and stresses calculated by the ACI 209 model are the closest to the fitted model in the three existing models, demonstrating that the ACI 209 model can be used for creep analysis of CFST arch bridges and can meet the engineering accuracy requirement when lack of experimental data.

단기 크리프 시험 결과를 이용한 콘크리트의 크리프 예측시의 수정 (Modification of Creep-Prediction Equation of Concrete utilizing Short-term Creep Test)

  • 송영철;송하원;변근주
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.69-78
    • /
    • 2000
  • Creep of concrete is the most dominating factor affecting time-dependent deformations of concrete structures. Especially, creep deformation for design and construction in prestressed concrete structures should be predicted accurately because of its close relation with the loss in prestree of prestressed concrete structures. Existing creep-prediction models for special applications contain several impractical factors such as the lack ok accuracy, the requirement of long-term test and the lack of versatility for change in material properties, ets., which should be improved. In order to improve those drawbacks, a methodology to modify the creep-prediction equation specified in current Korean concrete structures design standard (KCI-99), which underestimates creep of concrete and does not consider change of condition in mixture design, is proposed. In this study, short-term creep tests were carried out for early-age concrete within 28 days after loading and their test results on influencing factors in the equation are analysed. Then, the prediction equation was modified by using the early-age creep test results. The modified prediction equation was verified by comparing their results with results obtained from long-term creep test.

The Prediction of Concrete Creep

  • 손호웅;(YoungKyungKim)
    • 지구물리
    • /
    • 제7권4호
    • /
    • pp.277-282
    • /
    • 2004
  • Creep deformation of concrete is often responsible for excessive deflection at loads which can compromise the performance of elements within structures. Hence, the prediction of the magnitude and rate of creep strain is an important requirement of the design process and management of structures. Although laboratory tests may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically based national design code models are relied upon to predict the magnitude of creep strain.This paper reviews the accuracy of creep predictions yielded by eight commonly used international "code type" models, all of which do not consider the same material parameters and yield a range of predicted strains, when compared with actual strains measured on a range of concretes in seventeen different investigations. The models assessed are the: SABS 0100 (1992), BS 8110 (1985), ACI 209 (1992), AS 3600 (1998), CEB-FIP (1970, 1978 and 1990) and the RILEM Model B3 (1995). The RILEM Model B3 (1995) and CEB-FIP (1978) were found to be the most and least accurate, respectively.

  • PDF

Creep behaviour of normal- and high-strength self-compacting concrete

  • Aslani, Farhad
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.921-938
    • /
    • 2015
  • Realistic prediction of concrete creep is of crucial importance for durability and long-term serviceability of concrete structures. To date, research about the behaviour of self-compacting concrete (SCC) members, especially concerning the long-term performance, is rather limited. SCC is quite different from conventional concrete (CC) in mixture proportions and applied materials, particularly in the presence of aggregate which is limited. Hence, the realistic prediction of creep strains in SCC is an important requirement for the design process of this type of concrete structures. This study reviews the accuracy of the conventional concrete (CC) creep prediction models proposed by the international codes of practice, including: CEB-FIP (1990), ACI 209R (1997), Eurocode 2 (2001), JSCE (2002), AASHTO (2004), AASHTO (2007), AS 3600 (2009). Also, SCC creep prediction models proposed by Poppe and De Schutter (2005), Larson (2007) and Cordoba (2007) are reviewed. Further, new creep prediction model based on the comprehensive analysis on both of the available models i.e. the CC and the SCC is proposed. The predicted creep strains are compared with the actual measured creep strains in 55 mixtures of SCC and 16 mixtures of CC.

환형소결체 하나로 조사시험용 무계장 리그의 차압 및 유동유발 진동시험 (Pressure Drop and Flow-Induced Vibration Test for the HANARO Non-instrumented Irradiation Test Rig of Annular Fuel Pellet)

  • 이강희;김대호;방제건
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.281-286
    • /
    • 2007
  • Needs of fuel's performance evaluation for the dual-cooled fuel pellet (annular shape) necessitate the irradiation test in the test reactor. Irradiation test rig for the HARARO reactor, which is a special-purposed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this paper, pressure drop and flow-induced vibration test for the newly developed non-instrumented test rig were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin. The spectral response characteristics of the flow-induced vibration of the test rid were also discussed.

  • PDF

환형소결체 하나로 조사시험용 무계장 캡슐의 연구로 설치 적합성시험 (Compatibility test of a non-instrumented irradiation test capsule for the HANARO test reactor)

  • 이강희;김대호;전태현;김형규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.226-229
    • /
    • 2008
  • To investigate an in-pile behavior of the newly developed DUO fuel pellet, the irradiation test will be carried out in the domestic test reactor. Irradiation test capsule for the HANARO reactor, which is a specially designed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this study, a pressure drop, a flow-induced vibration and a short-term endurance test for the newly developed non-instrumented test capsule were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin.

  • PDF

지오그리드 보강토 교대의 장기거동에 관한 수치해석 연구 (Long-Term Behavior of Geogrid Reinforced Soil Abutment - A Numerical Investigation)

  • 유충식;전한용
    • 한국지반공학회논문집
    • /
    • 제27권1호
    • /
    • pp.65-76
    • /
    • 2011
  • 본 논문에서는 보강토 구조물의 장기거동에 관한 수치해석 내용을 다루었다. 본 연구는 사용연한동안 지속하중을 받는 보강토 구조물의 장기 변형 관련 메카니즘을 고찰하는데 주 목적을 두었다. 연구를 위해 먼저 Singh-Mitchell 크리프 모델과 멱함수(Power law) 크리프 모델을 이용하여 각각 뒤채움흙과 보강재의 크리프 변형을 모델링하는 방안을 구축하였으며 이를 토대로 뒤채움흙과 토목섬유 보강재의 크리프 특성에 대한 매개변수 연구를 수행하였다. 해석결과 외부하중을 받는 보강토 구조물이 세립분이 많이 포함되어 있는 흙으로 뒤채움이 될 경우 뒤채움흙과 토목섬유 보강재로부터 발생하는 크리프 효과로 인해 상당한 크기의 장기 변형이 발생할 수 있는 것으로 나타났다. 본 논문에서는 외부하중을 받는 보강토 구조물에 있어서 크리프 효과가 구조물의 사용성에 미치는 영향을 집중적으로 고찰하였다.

Minimum thickness of flat plates considering construction load effect

  • Hwang, Hyeon-Jong;Ma, Gao;Kim, Chang-Soo
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.1-10
    • /
    • 2019
  • In the construction of flat plate slabs, which are widely used for tall buildings but have relatively low flexural stiffness, serviceability problems such as excessive deflections and cracks are of great concern. To prevent excessive deflections at service load levels, current design codes require the minimum slab thickness, but the requirement could be unconservative because it is independent on loading and elastic modulus of concrete, both of which have significant effects on slab deflections. In the present study, to investigate the effects of the construction load of shored slabs, reduced flexural stiffness and moment distribution of early-age slabs, and creep and shrinkage of concrete on immediate and time-dependent deflections, numerical analysis was performed using the previously developed numerical models. A parametric study was performed for various design and construction conditions of practical ranges, and a new minimum permissible thickness of flat plate slabs was proposed satisfying the serviceability requirement for deflection. The proposed minimum slab thickness was compared with current design code provisions and numerical analysis results, and it agreed well with the numerical analysis results.