• Title/Summary/Keyword: Republic of Korea Air Force

Search Result 161, Processing Time 0.028 seconds

Development of CanSat System With 3D Rendering and Real-time Object Detection Functions (3D 렌더링 및 실시간 물체 검출 기능 탑재 캔위성 시스템 개발)

  • Kim, Youngjun;Park, Junsoo;Nam, Jaeyoung;Yoo, Seunghoon;Kim, Songhyon;Lee, Sanghyun;Lee, Younggun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.671-680
    • /
    • 2021
  • This paper deals with the contents of designing and producing reconnaissance hardware and software, and verifying the functions after being installed on the CanSat platform and ground stations. The main reconnaissance mission is largely composed of two things: terrain search that renders the surrounding terrain in 3D using radar, GPS, and IMU sensors, and real-time detection of major objects through optical camera image analysis. In addition, data analysis efficiency was improved through GUI software to enhance the completeness of the CanSat system. Specifically, software that can check terrain information and object detection information in real time at the ground station was produced, and mission failure was prevented through abnormal packet exception processing and system initialization functions. Communication through LTE and AWS server was used as the main channel, and ZigBee was used as the auxiliary channel. The completed CanSat was tested for air fall using a rocket launch method and a drone mount method. In experimental results, the terrain search and object detection performance was excellent, and all the results were processed in real-time and then successfully displayed on the ground station software.

The Study on the Frontal Thunderstorm during Winter Time in the Korean Peninsula (우리나라 동계 전선성 뇌우에 관한 연구)

  • Kim, Jong-Seok;Park, Sang Hwan;Ham, Sook Jung;Ban, Ki-Song;Choi, Young Jean;Chang, Dong-Eon;Chung, Hyo-Sang
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.351-358
    • /
    • 2006
  • The structure of frontal thunderstorm in winter time is different from that of in summer time over the Korean peninsula, due to dry tongue and upward motion. The dry tongue, that is propagation of dry zone from upper level to lower level, was formed after front passage and the upward motion is intensified by the strengthened low level jet. Since this mechanism makes the structure more unstable, thunderstorm occurs at relatively low cloud top height. This study suggests a forecast guidance of winter time frontal thunderstorm that thunderstorms develop when one of the following conditions are satisfied: 1) total totals (TT) >40, 2) K index >-10, 3) mixing ratio ${\geq}$ 3.5 g/kg.

Development of Modeling and Simulation Tool for the Performance Analysis of Pods Mounted on Highly Maneuverable Aircraft (고기동 항공기 탑재 파드 성능 분석을 위한 모델링 및 시뮬레이션 도구 개발)

  • Lee, Sanghyun;Shin, Jinyoung;Lee, Jaein;Kim, Jongbum;Kim, Songhyon;Kim, Sitae;Cho, Donghyurn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.507-514
    • /
    • 2022
  • The EO/IR targeting pod mounted on a fighter to acquire information about tactical targets is typically mounted and operated at the bottom of the aircraft fuselage. Since the aircraft equipped with such an external attachment has complexed aerodynamic and inertial characteristics compared to the aircraft flying without an external attachment, a method of system performance analyses is required to identify development risk factors in the early stages of development and reflect them in the design. In this study, a development plan was presented to provide the necessary modeling and simulation tools to develop a pod that can acquire measurement data stably in a highly maneuverable environment. The limiting operating conditions of the pods mounted on the highly maneuverable aircraft were derived, the aerodynamics and inertial loads of the mounted pods were analyzed according to the limiting operating conditions, and a flight data generation and transmission system were developed by simulating the mission of the aircraft equipped with the mounted pods.

Development of CanSat Instruction Materials using Raspberry Pi for Space Education in University and Its Application (대학생의 우주 교육을 위한 라즈베리 파이 기반 캔위성 수업자료 개발과 적용)

  • Yoo, Seunghoon;Lee, Sanghyun;Lee, Sangku;Lee, Younggun
    • Journal of Engineering Education Research
    • /
    • v.26 no.1
    • /
    • pp.3-11
    • /
    • 2023
  • The purpose of this study is to develop Raspberry Pi-based CanSat instruction materials for liberal arts classes to be used in university space education. The educational satellite simulation program is developed by applying the ADDIE program consisting of analysis, design, development, execution, and evaluation of 15 lessons per semester. The usefulness of the instruction materials is evaluated by a validity test of a total of 6 experts. The proposed materials are applied to 100 college students from various majors. To analyze the impact on creative problem-solving ability, a questionnaire is conducted before and after class, and as a result, it is confirmed that there is a significant improvement in all areas after class. The class satisfaction survey is conducted for a total of 10 questions, and the average score is 4.41 out of 5, which is high. In conclusion, the proposed instruction materials make it possible to achieve successful space education using Raspberry Pi and improve creative problem-solving ability in universities.

Development of Instructional Materials for 3D Printing Education Program and Its Application (3D 프린팅 교육 프로그램을 위한 수업자료 개발과 적용)

  • Lee, Younggun;Lee, Sanghyun;Yoo, Seunghoon;Kim, Sitae
    • Journal of Engineering Education Research
    • /
    • v.24 no.3
    • /
    • pp.42-49
    • /
    • 2021
  • This paper deals with the development and application of a 3D printing education program implemented to cultivate creative fusion-type talents required by the 4th Industrial Revolution. Specifically, the entire process developed by applying the ADDIE program development model, from 3D modeling to post-processing of printed materials, was performed individually and for each team for about 200 second-year college students for two weeks. Through this program, students develop the basic ability to apply 3D printing to the learning curriculum, the ability to solve problems through cooperative interactions between team members, and convergence thinking ability by collaborating within the team by students from various major fields. They are proved by analyzing an education satisfaction survey conducted after application of the program. In conclusion, the program of this paper presents a methodology for effective 3D printing education in universities.

Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System (공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구)

  • Noh, Kyoungjo;Kim, Hyun Mee;Kim, Dae-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.

Development Trends of Small Satellites and Military Applications (소형위성의 개발현황 및 군사적 활용 방안)

  • Lee, Sanghyun;Oh, Jaeyo;Kwon, Kyebeom;Lee, Gil-Young;Cho, Taehwan
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • Large satellite development programs might take decades to build, launch and operate in space environments at costs in excess of a billion dollars. However, small satellites can reduce the costs not only by using commercial software and sensors, but also by shortening the development period to two years or less. In this paper, we discuss the development status of small satellites, and propose some military applications of small satellites. First, we describe the industrial trends of small satellites in advanced countries such as the United States and Japan. Also, we describe the development status of small satellites in Korea. Military applications are largely classified into education, research, and operational purposes. Small satellites are developing rapidly in commercial markets and they will play an important role in military sector. Therefore, the military should consider small satellites as important strategic assets in future conflicts and provide means to develop them.

Investigation of Detectable Crack Length in a Bolt Hole Using Eddy Current Inspection (와전류탐상검사를 이용하여 탐지 가능한 볼트홀 내부 균열 길이 연구)

  • Lee, Dooyoul;Yang, Seongun;Park, Jongun;Baek, Seil;Kim, Soonkil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.729-736
    • /
    • 2017
  • In this study, the physics-based model and machine learning technique were used to conduct model-assisted probability of detection (MAPOD) experiments. The possibility of using in-service cracked parts was also investigated. Bolt hole shaped specimens with fatigue crack on the hole surface were inspected using eddy current inspection. Owing to MAPOD, the number of experimental factors decreased significantly. The uncertainty in the crack length measurement for in-service cracked parts was considered by the application of Monte Carlo simulation.

Design of a Wideband Substrate-Integrated Waveguide (SIW) Frequency Selective Surface (광대역 특성을 가지는 SIW 주파수 선택 표면 설계)

  • Oh, Semyoung;Lee, Hanjun;Lee, Gil-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.107-111
    • /
    • 2014
  • An SIW cavity is a useful tool to design an FSS which shows a rapid roll-off rate and insensitivity to polarizations and incident angles of electromagnetic waves. However, due to its high Q-factor, the FSS also shows narrow bandwidth which is undesirable for high-capacity communication. To address this drawback, we propose a novel technique to enhance the bandwidth while maintaining similar frequency response characteristics and minimizing the increase of the overall thickness of the SIW cavity FSS. In order to verify the performance of the technique, simulated frequency responses will be provided. Also, a parameter which affects the bandwidth will be studied. Finally the stability to polarizations and incident angles will be observed through the simulated results.

Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

  • Lee, Jaewon;Park, Inchun;Kim, Junsik;Lee, Jaejin;Hwang, Junga;Kim, Young-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a high-altitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of $15.27{\mu}Sv$) of aircrew at the high-altitude are an order of magnitude larger than those (an average of $0.30{\mu}Sv$) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC-800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.