• Title/Summary/Keyword: Reproducing kernel

Search Result 71, Processing Time 0.023 seconds

A UNITARY LINEAR SYSTEM ON THE BIDISK

  • Yang, Meehyea;Hong, Bum-Il
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.511-521
    • /
    • 2007
  • Let S($z_1$, $z_2$) be a power series with operator coefficients such that multiplication by 5($z_1$, $z_2$) is a contractive transformation in the Hilbert space $\mathbf{H}_2$($\mathbb{D}^2$, C). In this paper we show that there exists a Hilbert space D($\mathbb{D}$,$\bar{S}$) which is the state space of extended canonical linear system with a transfer fucntion $\bar{S}$(z).

Analysis of Metal Forming Process Using Meshfree Method (무요소법에 의한 금속성형공정의 해석)

  • Han, Kyu-Taek
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1569-1572
    • /
    • 2003
  • Meshfree approximations exhibit significant potential to solve partial differential equations. Meshfree methods have been successfully applied to various problems which the traditional finite element methods have difficulties to handle, including the quasi-static and dynamic fracture. large deformation problems, contact problems, and strain localization problems. A meshfree method based on the reproducing kernel particle approximation(RKPM) is applied to sheet metal forming analysis in this research. Metal forming examples, such as stretch forming and flanging operation, are analyzed to demonstrate the performance of the proposed meshfree method for largely deformed elasto-plastic material.

  • PDF

REGULARIZED SOLUTION TO THE FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND WITH NOISY DATA

  • Wen, Jin;Wei, Ting
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.23-37
    • /
    • 2011
  • In this paper, we use a modified Tikhonov regularization method to solve the Fredholm integral equation of the first kind. Under the assumption that measured data are contaminated with deterministic errors, we give two error estimates. The convergence rates can be obtained under the suitable choices of regularization parameters and the number of measured points. Some numerical experiments show that the proposed method is effective and stable.

APPLICATIONS ON THE BESSEL-STRUVE-TYPE FOCK SPACE

  • Soltani, Fethi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.875-883
    • /
    • 2017
  • In this work, we establish Heisenberg-type uncertainty principle for the Bessel-Struve Fock space ${\mathbb{F}}_{\nu}$ associated to the Airy operator $L_{\nu}$. Next, we give an application of the theory of extremal function and reproducing kernel of Hilbert space, to establish the extremal function associated to a bounded linear operator $T:{\mathbb{F}}_{\nu}{\rightarrow}H$, where H be a Hilbert space. Furthermore, we come up with some results regarding the extremal functions, when T are difference operators.

The East Moving Least Square Reproducing Kernel Approximation and Point Collocation Method (고속 최소 자승법을 이용한 점별 계산법)

  • 김용식;김도완
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-574
    • /
    • 2002
  • 새로운 자유격자 관사를 이용한 점별 계산법을 제안한다 이동 최소 자승법을 이용한 기저의 생성과 기저의 근사적 미분을 동시에 구해내는 자유격자 근사를 유도하여, 직접 점별 계산법을 고안하였다. 기존의 자유 격자 법에서는 기저의 직접 미분을 사용하므로 높은 계산 비용이 필요하지만, 이 논문에서 제안된 방법은 기저의 생성과 동시에 기저의 근사적 미분을 구하게 된다. 또한 기존의 방법에서 필요하였던, 창 함수(window function)의 미분가능성을 연속성으로 대치할 수 있으므로, 주어진 문제에 따라 다양한 창 함수를 이용할 수 있다. 기저의 재생성과 interpolation의 수렴성을 소개하고, 수치 예제로서, Poisson 문제를 통해 이 방법의 유효함을 보인다.

  • PDF

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

Electromagnetic Field Analysis Using the Point Collocation Method Based on the FMLSRK Approximation

  • Kim, Hong-Kyu;Chong, Jin-Kyo;Park, Kyong-Yop;Kim, Do-Wan
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.180-183
    • /
    • 2004
  • This paper presents a description of the point collocation method and its application to the electromagnetic field computation. The interpolation scheme is based on the fast moving least square reproducing kernel approximation. In the method, the integration cell is not required and the essential boundary conditions can be enforced directly. Numerical simulations on 1-D and 2-D problems are carried out to validate the method. It is found that computational efficiency is higher than the general mesh-free methods.

대변형 초탄성 재료의 해석을 위한 무요소 적응기법

  • 전석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.736-739
    • /
    • 1995
  • The meshless adaptive method based on multiple scale analysis is developed to simulate large deformation problems. In the procedure, new particles are simply added to the orginal particle distribution because meshless methods do not require mesh structures in the formulations. The high scale component of the approximated solution detects the localized region where a refinement is needed. The high scale component of the second invariant od Green-Lagrangian strain tensor is suggested as the new high gradient detector for adaptive procedures. The feasibility of the proposed theory is demonstrated by a numerical experiment for the large deformation of hyperelastic materials.

  • PDF