• 제목/요약/키워드: Repressing

검색결과 80건 처리시간 0.03초

친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발 (Isolation and Selection of Functional Microbes for Eco-friendly Turfgrass Management in Golf Course from Livestock Manure Compost)

  • 정제용;김영선;조성현;이긍주
    • Weed & Turfgrass Science
    • /
    • 제6권2호
    • /
    • pp.157-164
    • /
    • 2017
  • 본 연구는 미생물을 이용하여 친환경적인 잔디관리를 위해 계분이나 돈분의 퇴비화 과정에서 얻어진 가축분 퇴비로부터 단백질 및 탄수화물 분해능과 잔디 갈색퍼짐병(large patch), 갈색마름병(brown patch), 그리고 동전마름병(dollar spot) 병원균에 항균활성을 보이는 미생물을 분리하기 위하여 실시하였다. 분리된 미생물은 총 68균주였고, 이들을 대상으로 단백질 분해활성, 탄수화물 분해활성 및 잔디 주요병원균에 대한 항균활성을 조사하여 활성이 높은 미생물 34균주를 선발하였다. 이 중에서 단백질과 탄수화물 분해 및 항균활성을 나타내는 균주인 ASC-14, ASC-18 및 ASC-35를 선발하였다. 이들 선발 균주를 대상으로 16s rRNA 유전자 분석 결과 ASC-14와 ASC-18은 B. amyloliquefaciens로 확인되었고, 반면에 ASC-35는 B. subtilis 세균으로 최종 동정되었다.

Long-Term Intake of High Doses of Vitamin C Down-regulates Anti-oxidant Enzymes in Human Erythrocytes

  • Kim, Hee-Joon;Park, Min-Kyung;Rhee, Kwang-Ho;Youn, Hee-Sang;Ko, Seong-Hee;Kim, Hyun-Sook;Chung, Myung-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제13권3호
    • /
    • pp.139-145
    • /
    • 2008
  • We located a group of healthy young males (aged $20{\sim}30$) who had been taking a high dose (more than 5 g) of vitamin C daily for more than one year. We observed that this vitamin C group had plasma levels of vitamin C that were more than three times that of the control group. The control group had not taken any additional vitamin C except for that included in their diets. But the vitamin C group showed significantly lower amounts of Cu/ZnSOD, catalase and glutathione-s-transferase and lower activities of glutathione peroxidase and glutathione reductase in erythrocyte lysates than the control group. However, there was no difference in the plasma levels of lipid peroxides between the two groups. These results suggest that vitamin C offsets its own contribution to anti-oxidant activity by repressing the expression of anti-oxidant enzymes and also excludes the possibility that vitamin C acts as a pro-oxidant in vivo.

MicroRNA Analysis in Normal Human Oral Keratinocytes and YD-38 Human Oral Cancer Cells

  • Kim, Hye-Ryun;Park, Eu-Teum;Cho, Kwang-Hee;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • 제36권4호
    • /
    • pp.179-185
    • /
    • 2011
  • MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing targeted mRNAs. These molecules are about 21-25 nucleotides in length and exert their effects by binding to partially complementary sites in mRNAs, predominantly in the 3'-untranslated region (3'-UTR). Recent evidence has demonstrated that miRNAs can function as oncogenes or tumor suppressors through the modulation of multiple oncogenic cellular processes in cancer development, including initiation, cell proliferation, apoptosis, invasion and metastasis. In our present study, we examined the expression profile of miRNAs related to oral cancer cell growth inhibition using normal human oral keratinocytes (NHOK) and YD-38 human oral cancer cells. By miRNA microassay analysis, 40 and 31 miRNAs among the 1,769 examined were found to be up- and down-regulated in YD-38 cells compared with NHOK cells, respectively. Using qRT-PCR analysis, the expression levels of miR-30a and miR-1246 were found to be increased in YD-38 cells compared with NHOK cells, whereas miR-203 and miR-125a were observed to be decreased. Importantly, the overexpression of miR-203 and miR-125a significantly inhibited the growth of YD-38 cells. This finding and the microarray data indicate the involvement of specific miRNAs in the development and progression of oral cancer.

Rhizopus nigricans의 Progesterone전환 반응 산물에 관한 포도당의 효과 (Effects of Glucose on the Products of Progesterone Transformation by Rhizopus nigricans)

  • 김명희;김종혜;김말남
    • 미생물학회지
    • /
    • 제29권4호
    • /
    • pp.258-262
    • /
    • 1991
  • Rhizopus nigricans에 의한 progest$\xi$rone의 Iia-hydroxylation 반응은 포도당에 의하여 촉진되었으며 그 효과가 전자 수용체인 NADPH와 NaJD. 를 투입하였을 때의 효과와 유사한 것으로 부터 표도당은 이 반응에 필요한 보조요소의 생성에 기여하며 hydroxylation 반응을 촉진한다고 생각되었다 포도당의 소모량은 hydroxy lation 반응 속도가 빠을수록 크게 나타났으며 포도당의 농도가 증가함에 따라 반응 속도는 점차 증가하다가 균사체는 0.5 g/l 포자체는 20 g/l에서 거의 일정해지는 경향을 나타내었다. 그러나 polyacrylamide gel에 고정화한 균사체의 경우 배양 기간 동안 gel내에 축적되어 있는 포도당 만으로도 반응이 충분히 촉진되었다. a-Hydroxy progesterone의 Sa-reduction 반응은 p progesterone의 11a-hyroxylation 반응에 버하여 훨씬 더 높은 포도당 농도가 필요하므로 포노당의 농도를 낮게 유지시킴으로써 5a-reducrion 반응을 억제하여 11 a-hydroxyprogesterone의 수득융을 높힐 수 있음 갯으로 판단되었다.

  • PDF

RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis

  • Shin, Hyun-young;Nam, Kyoung Hee
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1072-1080
    • /
    • 2018
  • A plant-specific B3 domain and AP2 domain-containing transcription factor, RAV1 acts as a negative regulator of growth in many plant species and its transcription was down-regulated by BR and ABA. In this study, we found that RAV1-overexpressing transgenic plants showed abnormally developed ovules, resulting in reduced seed size, weight, and number in a silique. Interestingly, the endogenous expression of RAV1 fluctuated during seed development; it remained low during the early stage of seed development and sharply increased in the seed maturation stage. In plants, seed development is a complex process that requires coordinated growth of the embryo, endosperm, and maternal integuments. Among many genes that are associated with endosperm proliferation and embryo development, three genes consisting of SHB1, MINI3, and IKU2 form a small unit positively regulating this process, and their expression was regulated by BR and ABA. Using the floral stage-specific RNAs, we found that the expression of MINI3 and IKU2, the two downstream genes of the SHB1-MINI3-IKU2 cascade in the seed development pathway, were particularly reduced in the RAV1-overexpressing transgenic plants. We further determined that RAV1 directly binds to the promoter of MINI3 and IKU2, resulting in their repression. Direct treatment with brassinolide (BL) improved seed development of RAV1-overexpressing plants, but treatment with ABA severely worsened it. Overall, these results suggest that RAV1 is an additional negative player in the early stages of seed development, during which ABA and BR signaling are coordinated.

Vitexin Inhibits Gastric Cancer Growth and Metastasis through HMGB1-mediated Inactivation of the PI3K/AKT/mTOR/HIF-1α Signaling Pathway

  • Zhou, Peng;Zheng, Zi-Han;Wan, Tao;Wu, Jie;Liao, Chuan-Wen;Sun, Xue-Jun
    • Journal of Gastric Cancer
    • /
    • 제21권4호
    • /
    • pp.439-456
    • /
    • 2021
  • Purpose: Gastric cancer (GC) has high morbidity and mortality and is a serious threat to public health. The flavonoid compound vitexin is known to exhibit anti-tumor activity. In this study, we explored the therapeutic potential of vitexin in GC and its underlying mechanism. Materials and Methods: The viability, migration, and invasion of GC cells were determined using MTT, scratch wound healing, and transwell assays, respectively. Target molecule expression was determined by western blotting. Tumor growth and liver metastasis were evaluated in vivo using nude mice. Protein expression in the tumor tissues was examined by immunohistochemistry. Results: Vitexin inhibited GC cell viability, migration, invasion, and epithelial-mesenchymal transition (EMT) in a dose-dependent manner. Vitexin treatment led to the inactivation of phosphatidylinositol-3-kinase (PI3K)/AKT/hypoxia-inducible factor-1α (HIF-1α) pathway by repressing HMGB1 expression. Vitexin-mediated inhibition in proliferation, migration, invasion and EMT of GC cells were counteracted by hyper-activation of PI3K/AKT/HIF-1α pathway or HMGB1 overexpression. Finally, vitexin inhibited the xenograft tumor growth and liver metastasis in vivo by suppressing HMGB1 expression. Conclusions: Vitexin inhibited the malignant progression of GC in vitro and in vivo by suppressing HMGB1-mediated activation of PI3K/Akt/HIF-1α signaling pathway. Thus, vitexin may serve as a promising therapeutic agent for the treatment of GC.

LuxR-Type SCO6993 Negatively Regulates Antibiotic Production at the Transcriptional Stage by Binding to Promoters of Pathway-Specific Regulatory Genes in Streptomyces coelicolor

  • Tsevelkhoroloo, Maral;Li, Xiaoqiang;Jin, Xue-Mei;Shin, Jung-Ho;Lee, Chang-Ro;Kang, Yup;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1134-1145
    • /
    • 2022
  • SCO6993 (606 amino acids) in Streptomyces coelicolor belongs to the large ATP-binding regulators of the LuxR family regulators having one DNA-binding motif. Our previous findings predicted that SCO6993 may suppress the production of pigmented antibiotics, actinorhodin, and undecylprodigiosin, in S. coelicolor, resulting in the characterization of its properties at the molecular level. SCO6993-disruptant, S. coelicolor ΔSCO6993 produced excess pigments in R2YE plates as early as the third day of culture and showed 9.0-fold and 1.8-fold increased production of actinorhodin and undecylprodigiosin in R2YE broth, respectively, compared with that by the wild strain and S. coelicolor ΔSCO6993/SCO6993+. Real-time polymerase chain reaction analysis showed that the transcription of actA and actII-ORF4 in the actinorhodin biosynthetic gene cluster and that of redD and redQ in the undecylprodigiosin biosynthetic gene cluster were significantly increased by SCO6993-disruptant. Electrophoretic mobility shift assay and DNase footprinting analysis confirmed that SCO6993 protein could bind only to the promoters of pathway-specific transcriptional activator genes, actII-ORF4 and redD, and a specific palindromic sequence is essential for SCO6993 binding. Moreover, SCO6993 bound to two palindromic sequences on its promoter region. These results indicate that SCO6993 suppresses the expression of other biosynthetic genes in the cluster by repressing the transcription of actII-ORF4 and redD and consequently negatively regulating antibiotic production.

Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma

  • Junliang Ma;Yijun Luo;Yingjie Liu;Cheng Chen;Anping Chen;Lubiao Liang;Wenxiang Wang;Yongxiang Song
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.61-73
    • /
    • 2023
  • Esophageal squamous cell carcinoma (ESCC) is a kind of malignant tumor with high incidence and mortality in the digestive system. The aim of this study is to explore the function of lnc-ABCA12-3 in the development of ESCC and its unique mechanisms. RT-PCR was applied to detect gene transcription levels in tissues or cell lines like TE-1, EC9706, and HEEC cells. Western blot was conducted to identify protein expression levels of mitochondrial apoptosis and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway. CCK-8 and EdU assays were carried out to measure cell proliferation, and cell apoptosis was examined by flow cytometry. ELISA was used for checking the changes in glycolysis-related indicators. Lnc-ABCA12-3 was highly expressed in ESCC tissues and cells, which preferred it to be a candidate target. The TE-1 and EC9706 cells proliferation and glycolysis were obviously inhibited with the downregulation of lnc-ABCA12-3, while apoptosis was promoted. TLR4 activator could largely reverse the apoptosis acceleration and relieved the proliferation and glycolysis suppression caused by lnc-ABCA12-3 downregulation. Moreover, the effect of lnc-ABCA12-3 on ESCC cells was actualized by activating the TLR4/NF-κB signaling pathway under the mediation of exosome. Taken together, the lnc-ABCA12-3 could promote the proliferation and glycolysis of ESCC, while repressing its apoptosis probably by regulating the TLR4/NF-κB signaling pathway under the mediation of exosome.

『지성과 감성』과 『오만과 편견』에서 일탈적 감수성과 정상 (Deviant Sensibility and Normality in Sense and Sensibility and Pride and Prejudice)

  • 손영희
    • 영어영문학
    • /
    • 제57권5호
    • /
    • pp.839-870
    • /
    • 2011
  • This study compares and contrasts Jane Austen's novels of sensibility with those of Rousseau and Goethe. In Julie, or The New Heloise and The Sorrows of Young Werther, the passionate but doomed love of the heroine and her lover is juxtaposed with her passionless marriage to the virtuous husband. In Sense and Sensibility and Pride and Prejudice, Austen revises Rousseau and Goethe's novels of sensibility to accommodate them to the puritanical English literary conventions. She parodies the basic plot of Menage a trois found in their novels of sensibility and transforms her novels into British Bildungsroman, focusing on the heroines' maturation. In Sense and Sensibility, Marianne stands up against the mercenary and snobbish high society. However, Austen represses Marianne's sensibility since the indulgence in sensibility can bring about sexual fall, as is evidenced by the cases of the two Elizas. Marianne's dangerous fever following Willoughby's betrayal emphasizes that female sexual desire should be punished for her continued existence in the high society. The taming of her sensibility and body through the fever is posited as a prerequisite for the happy marriage. In Pride and Prejudice, Elizabeth favors the deprived Wickham over the wealthy Darcy. As Wickham turns out to be a debauched lover, Darcy snatches sexual charms from him and is transfigured into one of the most virtuous and attractive husbands in Menage a trois of the novels of sensibility. Acknowledging sexuality as a vital element of a courtship, Austen embeds sexual desire in dances and glances. However, Elizabeth has to repress sensibility and desire and the complete gratification of desire is continuously deferred to some indefinite period in the future. Marriage is a synecdoche for the union of the bourgeois and the aristocracy in Austen's Bildungsroman and Marianne and Elizabeth are bestowed with happy marriage in return for repressing their sensibility and desire. Since their 'normality' and 'maturation' have been achieved at the expense of subversive sexual power of deviant sensibility, they look too impotent to gratify their desire when they finally secure comfortable but mediocre upper class life.

Inhibition of Chitinase-3-like-1 by K284-6111 Reduces Atopic Skin Inflammation via Repressing Lactoferrin

  • Seong Hee Jeon;Yong Sun Lee;In Jun Yeo;Hee Pom Lee;Jaesuk Yoon;Dong Ju Son;Sang-Bae Han;Jin Tae Hong
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.22.1-22.17
    • /
    • 2021
  • Chitinase-3-like-1 (CHI3L1) is known to induce inflammation in the progression of allergic diseases. Previous our studies revealed that 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284-6111; K284), the CHI3L1 inhibiting compound, has the anti-inflammatory effect on neuroinflammation. In this study, we investigated that K284 treatment could inhibit the development of atopic dermatitis (AD). To identify the effect of K284, we used phthalic anhydride (5% PA)-induced AD animal model and in vitro reconstructed human skin model. We analyzed the expression of AD-related cytokine mediators and NF-κB signaling by Western blotting, ELISA and quantitative real-time PCR. Histological analysis showed that K284 treatment suppressed PA-induced epidermal thickening and infiltration of mast cells. K284 treatment also reduced PA-induced release of inflammatory cytokines. In addition, K284 treatment inhibited the expression of NF-κB activity in PA-treated skin tissues and TNF-α and IFN-γ-treated HaCaT cells. Protein-association network analysis indicated that CHI3L1 is associated with lactoferrin (LTF). LTF was elevated in PA-treated skin tissues and TNF-α and IFN-γ-induced HaCaT cells. However, this expression was reduced by K284 treatment. Knockdown of LTF decreased the expression of inflammatory cytokines in TNF-α and IFN-γ-induced HaCaT cells. Moreover, anti-LTF antibody treatment alleviated AD development in PA-induced AD model. Our data demonstrate that CHI3L1 targeting K284 reduces AD-like skin inflammation and K284 could be a promising therapeutic agent for AD by inhibition of LTF expression.