• Title/Summary/Keyword: Representative Volume Element (RVE)

Search Result 49, Processing Time 0.021 seconds

A Study on the Prediction of Warpage During the Compression Molding of Glass Fiber-polypropylene Composites (유리섬유-폴리프로필렌 복합재료의 압축 공정 중 뒤틀림 예측에 관한 연구)

  • Gyuhyeong Kim;Donghyuk Cho;Juwon Lee;Sangdeok Kim;Cheolmin Shin;Jeong Whan Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • Composite materials, known for their excellent mechanical properties and lightweight characteristics, are applied in various engineering fields. Recently, efforts have been made to develop an automotive battery protection panel using a plain-woven composite composed of glass fiber and polypropylene to reduce the weight of automobiles. However, excessive warpage occurs during the GF/PP compression molding process, which makes car assembly challenging. This study aims to develop a model that predicts the warpage during the compression molding process. Obtaining out-of-plane properties such as elastic or shear modulus, essential for predicting warpages, is tricky. Existing mechanical methods also have limitations in calculating these properties for woven composite materials. To address this issue, finite element analysis is conducted using representative volume elements (RVE) for woven composite materials. A warpage prediction model is developed based on the estimated physical properties of GF/PP composite materials obtained through representative volume elements. This model is expected to be used for reducing warpages in the compression molding process.

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

Numerical and statistical analysis of permeability of concrete as a random heterogeneous composite

  • Zhou, Chunsheng;Li, Kefei
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.469-482
    • /
    • 2010
  • This paper investigates the concrete permeability through a numerical and statistical approach. Concrete is considered as a random heterogeneous composite of three phases: aggregates, interfacial transition zones (ITZ) and matrix. The paper begins with some classical bound and estimate theories applied to concrete permeability and the influence of ITZ on these bound and estimate values is discussed. Numerical samples for permeability analysis are established through random aggregate structure (RAS) scheme, each numerical sample containing randomly distributed aggregates coated with ITZ and dispersed in a homogeneous matrix. The volumetric fraction of aggregates is fixed and the size distribution of aggregates observes Fuller's curve. Then finite element method is used to solve the steady permeation problem on 2D numerical samples and the overall permeability is deduced from flux-pressure relation. The impact of ITZ on overall permeability is analyzed in terms of ITZ width and contrast ratio between ITZ and matrix permeabilities. Hereafter, 3680 samples are generated for 23 sample sizes and 4 contrast ratios, and statistical analysis is performed on the permeability dispersion in terms of sample size and ITZ characteristics. By sample theory, the size of representative volume element (RVE) for permeability is then quantified considering sample realization number and expected error. Concluding remarks are provided for the impact of ITZ on concrete permeability and its statistical characteristics.

Geometrical Modeling for Hybrid 3-D Braided Composites (하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링)

  • 한문희;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

The mechanical analysis of 3-D flat board shaped braided composites (삼차원 평판형태 브레이딩 복합재료의 강성해석)

  • 김성준;강태진;정관수;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.114-117
    • /
    • 2002
  • To develop an effective geometric modeling is essential in order that precise material properties of the 3-D braided composite can be estimated. in this study RVE(representative volume element) which is the smallest volume element representing whole material properties is developed to estimate the mechanical properties of 3-D flat board shaped braided composite using volume averaging method.

  • PDF

A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

  • Kim, Jung J.;Fan, Tai;Reda Taha, Mahmoud M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.503-516
    • /
    • 2011
  • Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE) method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

A new constitutive model to predict effective elastic properties of plain weave fabric composites

  • Mazaheri, Amir H.;Taheri-behrooz, Fathollah
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.651-659
    • /
    • 2021
  • In this study, a new constitutive model has been developed to predict the elastic behavior of plain weave textile composites, using the finite element (FE) method. The geometric conditions and basic assumptions of this model are based on the basics of a continuum theory developed for the plane curved composites. In this model, the mechanical properties of the weave region and pure matrix region is calculated separately and then imported for the FE analysis. This new constitutive model is used to implement the mechanical properties of weave region in the representative volume element (RVE). The constitutive relations are implemented as user-material subroutine code (UMAT) in ABAQUS® FE software. The results of FE analysis have been compared with experimental results and other data available in the literature. These comparisons confirmed the capability of the presented model for the prediction of effective elastic properties of plain weave fabric composites.