• Title/Summary/Keyword: Representative Concentration Pathway

Search Result 85, Processing Time 0.031 seconds

Effect of Regional Climate Change Projected by RCP Scenarios on the Efficiency of Low Impact Development Applications (RCP 시나리오에 따른 지역의 기후변화가 저영향개발 기법 효과에 미치는 영향)

  • Jeon, Ji-Hong;Kim, Tae-Dong;Choi, Donghyuk
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.409-417
    • /
    • 2018
  • This study elicited the necessity of considering regional climate change on Low Impact Development (LID) application by evaluating its effect on LID efficiency. The relationship between climate change factors and LID efficiency was evaluated with Representative Concentration Pathway (RCP) showing the increase of annual precipitation and representative evapotranspiration. Simply lowering lawn surface (LID3), a practical option to increase retention and infiltration effect, demonstrated hydrological improvement above two conventional options, bioretention with green roof (LID1) and bioretention only (LID2). High runoff reductions of applied options at RCP 4.5, supposing taking efforts for mitigating green house gases, revealed that climate change countermeasures were preferable to LID efficiencies. The increase of precipitation had more influence in hydrological change than that of reference evapotranspiration.

Long-term Estimation and Mitigation of Urban Development Impact on Watershed Hydrology (도시개발로 인한 장기 수문변화 예측과 저감 방안)

  • Jeon, Ji-Hong;Jang, Joo Bok;Kim, Tae-Dong;Choi, Donghyuk
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.419-428
    • /
    • 2018
  • This study is aimed at estimating and mitigating the impact of urban development on watershed hydrology for new town experienced with dramatical change of land use from rural to urban. The climate change scenario, representative concentration pathway (RCP), revealed direct response of runoff depth to precipitation, which increased until year 2100. The types of areas for urban use in addition to climate change affected the efficiencies of bioretention, applied as a low impact development (LID). Combining different areas for urban use suggested that a possible approach to mitigate the urban development impact on watershed hydrology by supplementing captured rainfall potential from area to area and attenuating peak discharge and retarding its time of concentration.

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt (MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측)

  • Taechul Park;Hojung Jang;SoEun Eom;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.214-223
    • /
    • 2022
  • Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

Effects of climate change and reduction method on water quality in Cheongmicheon watershed (기후 변화에 따른 청미천 유역의 수질 변화 및 저감 대책에 관한 연구)

  • Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.585-597
    • /
    • 2018
  • This study aims to investigate the variation of water quality and discharge under the condition of climate change and Best Management Practices (BMPs), which is one of the reduction methods for non-point source pollution. Soil and Water Assessment Tool (SWAT) model is applied to case in Cheongmicheon watershed. The coefficients required for SWAT model were calibrated using SWAT Calibration and Uncertainty Program. Climate change is considered by using Representative Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5. It is known from simulation results that the non-point source pollutant increases under the climate change scenario assuming worse condition. It is also found in this study that an appropriate application of BMPs is able to reduce the quantity and temporal variation of non-point source pollutant effectively.

A Study on Statistical Characteristics for Extreme Rainfall based on CMIP6 SSP scenario - Focused on Busan Metropolitan City (CMIP6 SSP 시나리오 극한 강우량의 통계적 특성 연구 - 부산광역시를 중심으로)

  • Kim, Sunghun;Kim, Heechul;Kim, Gyobeom;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.410-410
    • /
    • 2022
  • 기후변화에 관한 정부간 협의체(Intergovernmental Panel on Climate Change, IPCC)에서는 지난해부터 제6차 평가보고서(Sixth Assessment Report, AR6)를 준비하고 있으며, 최근 Working Group II에서 수행한 기후변화 영향, 적응 및 취약성(Impacts, Adaptation and Vulnerability) 보고서를 공개하였다. 보고서는 기존의 Representative Concentration Pathway (RCP) 시나리오에 사회경제적 조건을 추가로 고려한 Shared Socioeconomic Pathway (SSP) 시나리오를 제시하였고, 세계기후연구프로그램(World Climate Research Programme, WCRP)의 Coupled Model Intercomparison Project (CMIP)에서 제공하는 6단계(Phase 6) 미래 전망 자료를 적용하였다. 본 연구에서는 기후변화로 인한 미래 극한 강우량의 통계적 특성을 파악하기 위하여 CMIP6에서 제공하는 General Circulation Models (GCMs) 기반 미래 강우자료를 수집하여 부산광역시를 중심으로 분석하였다. 4개의 SSP (SSP126, SSP245, SSP370, SSP585) 시나리오별로 10개 GCMs의 모의 결과를 사용하였다. Gumbel 분포형과 확률가중모멘트법을 이용하여 미래 극한 강우량을 산정하였고, 현재 모의기간(S0, 1983-2014) 대비 미래 전망기간(S1, 2015-2044; S2, 2041-2070; S3, 2071-2100)의 변화를 재현기간(return period, T)별로 분석하여 제시하였다.

  • PDF

Projecting the spatial-temporal trends of extreme climatology in South Korea based on optimal multi-model ensemble members

  • Mirza Junaid Ahmad;Kyung-sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.314-314
    • /
    • 2023
  • Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.

  • PDF

Assessment of Water Use Vulnerability Considering Climate and Socioeconomic Changes in Han River Watershed (기후 및 사회·경제 변화를 고려한 한강 유역의 물이용 취약성 평가)

  • Park, Hyesun;Kim, Heey Jin;Chae, Yeora;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.965-972
    • /
    • 2017
  • Assessment of vulnerability of water use to climate change include a variety of climate change scenarios. However, in most future vulnerability studies, only the climate change scenarios are used and not the future scenarios of social and economic indicators. Therefore, in this study, we applied the Representative Concentration Pathway (RCP) climate change scenario and Shared Socioeconomic reference Pathway (SSP) developed by IPCC to reflect the future. We selected indicators for estimating the vulnerability of water use, and indices were integrated with a multi-criteria decision making approach - Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The indicator data utilized national statistics and reports, social and economic scenarios, and simulated results from the Soil and Water Assessment Tool (SWAT) model which reflects climate change scenario. Finally, we derived the rankings of water use vulnerability for the short-term future (2020) and mid-term future (2050) within the Han River watershed. Generally, considering climate change alone and considering climate change plus social and economic changes showed a similar spatial distribution. In the future scenarios, the watershed rankings were similar, but showed differences with SSP scenario in some watersheds. Therefore, considering social and economic changes is expected to contribute to more effective responses to climate change.

Future Prediction of Heat and Discomfort Indices based on two RCP Scenarios (기후변화 대응을 위한 RCP 시나리오 기반 국내 열지수와 불쾌지수 예측)

  • Lee, Suji;Kwon, Bo Yeon;Jung, Deaho;Jo, Kyunghee;Kim, Munseok;Ha, Seungmok;Kim, Heona;Kim, Byul Nim;Masud, M.A.;Lee, Eunil;Kim, Yongkuk
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.221-229
    • /
    • 2013
  • There has been an increasing need to assess the effects of climate change on human health. It is hard to use climate data to evaluate health effects because such data have a grid format, which could not represent specific cities or provinces. Therefore, the grid-format climate data of South Korea based on RCP (Representative Concentration Pathway) scenarios were modified into area-format climate data according to the major cities or provinces of the country, up to the year 2100. Moreover, heat index (HI) and discomfort index (DI) databases were developed from the modified climate database. These databases will soon be available for experts via a Website, and the expected HI and DI of any place in the country, or at any time, can be found in the country's climate homepage (http://www.climate.go.kr). The HI and DI were analyzed by plotting the average indices every ten years, and by comparing cities or provinces with index level changes, using the geographic information system (GIS). Both the HI and DI are expected to continually increase from 2011 to 2100, and to reach the most dangerous level especially in August 2100. Among the major cities of South Korea, Gwangju showed the highest HI and DI, and Gangwon province is expected to be the least affected area in terms of HI and DI among all the country's provinces.

Prediction of Adult Emergence Time and Generation Number of Overwintered Small Brown Planthopper, Laodelphax striatellus According to RCP8.5 Climate Change Scenario (RCP8.5 기후변화 시나리오에 따른 애멸구 월동 개체군의 성충 발생시기 및 연간 세대수 변화 예측)

  • Jung, Myung-Pyo;Park, Hong-Hyun;Lee, Sang-Guei;Kim, Kwang-Ho
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.427-430
    • /
    • 2013
  • Recently, climate change scenarios were substituted by the Special Report on Emission Scenarios (SRES) for Representative Concentration Pathway (RCP). Using the RCP scenario, the World Meteorological Organization (WMO) produced new climate change scenarios. Further, the National Institute of Meteorological Research (NIMR) of Korea produced new climate change scenarios for the Korean Peninsula. In this study, emergence time of small brown planthopper (SBPH), Laodelphax striatellus and the number of generations a year were estimated during climatic normal year (1981-2010) with previous studies and they were predicted during 2050s (2045-2054) and 2090s (2085-2094) by means of RCP8.5 climate change scenario. In comparison with $176.0{\pm}0.97$ Julian data in the climatic normal year, the emergence time of overwintering SBPH was predicted to be $13.2{\pm}0.18$ days ($162.8{\pm}0.91$ Julian date) earlier in 2050s and $32.1{\pm}0.61$ days ($143.9{\pm}1.08$ Julian date) earlier in 2090s. The SBPH was expected to produce an additional $2.0{\pm}0.02$ generations in 2050s and $5.2{\pm}0.06$ generations in 2090s.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.