Since it is common to have touch-screen devices, it is less challenging to draw sketches anywhere and save them in vector form. Current research on sketches considers coordinate sequence data and adopts sequential models for learning sketch representation in sketch understanding. In the sketch dataset, it has become customary that the dataset is in vector coordinate format. Moreover, the popular dataset does not consider real-life sketches, sketches from pencil, pen, and paper. Art psychology uses real-life sketches to analyze patients. ETRI presents a unique sketch dataset for sketch recognition of autism spectrum disorder in pixel format. We present a method to formulate the dataset for better generalization of sketch data. Through experiments, we show that pixel-based models can produce a good performance.
Zabel, Ahmed Moustfa;Dehaish, Buthinah Abdullateef Bin
Kyungpook Mathematical Journal
/
제48권4호
/
pp.559-575
/
2008
A commutative hypercomplex system $L_1$(Q,m) is, roughly speaking, a space which is defined by a structure measure (c(A,B, r), (A,$B{\in}{\beta}$(Q)). Such space has bee studied by Berezanskii and Krein. Our main purpose is to establish a generalization of convolution semigroups and to discuss the role of the L$\'{e}$vy measure in the L$\'{e}$vy-Khinchin representation in terms of continuous negative definite functions on the dual hypercomplex system.
In this paper, we are concerned with abstract random linear operators on probabilistic unitary spaces which are a generalization of generalized random linear operators on a Hilbert space defined in [25]. The representation theorem for abstract random bounded linear operators and some results on the adjoint of abstract random linear operators are given.
Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering Process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention on the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy (KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance. The KAH consists of two types of knowledge abstraction hierarchies. The value abstraction hierarchy is constructed by abstract values that are hierarchically derived from specific data values in the underlying database on the basis of generalization and specialization relationships. The domain abstraction hierarchy is built on the various domains of the data values and incorporates the classification relationship between super-domains and sub-domains. On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, database operations are discussed for both the generalization and specialization Processes, and the conceptual query handling. A prototype system has been implemented at KAIST that demonstrates the usefulness of KAH in ordinary database application systems.
이 논문은 문법적 추론에서 유전자 알고리즘의 진화대상으로 테이블 표현(Tabular representation: TBL)을 이용한 문맥자유 문법(Context-free grammar: CFG)을 학습하는 기존의 방법을 개선하여 더 효율적인 결과를 얻은 그 방법과 실험 결과를 제시한다. 이 논문에서 소개하는 개선된 점은 두가지로, 첫째는 적합도 함수를 긍정과 부정의 예들에 대한 학습 평가를 동시에 반영하도록 수식을 개선하고 둘째는 긍정적 학습 예들로부터 생성된 TBL들에 대응되는 파티션(partition)들을 학습 문자열의 크기별로 분류하여 부류별 진화 과정을 진행하며 그 성공률에 따라 구성 비율을 조정하여 다음세대에 생존에 연계하는 학습 방법을 적용한다. 이 개선점들은 학습 예들의 크기에 따른 TBL의 크기가 여러 개체들 사이의 교배와 일반화 단계에서 복잡성과 어려움을 해결하여 기존 방법보다도 좋은 효율을 제공한다. 이 연구는 기존 방법에서 제안된 언어들로 실험하고 그 결과는 기존 방법보다 같은 성공률을 갖는 상태에서 학습 완성의 평균 세대수가 적게 걸리는 다소 빠른 세대속도의 결과를 보여준다. 앞으로 이 방법은 확장된(extended) CYK에 시도할 수 있으며 더 나아가 좀 더 복잡한 파싱 테이블(parsing table)에도 적용할 가능성을 제시한다.
The degradation of wheel tread may result in serious hazards in the railway operation system. Therefore, timely wheel defect diagnosis of in-service trains to avoid tragic events is of particular importance. The focus of this study is to develop a novel wheel defect detection approach based on the relevance vector machine (RVM) which enables online detection of potentially defective wheels with trackside monitoring data acquired under different running-speed conditions. With the dynamic strain responses collected by a trackside monitoring system, the cumulative Fourier amplitudes (CFA) characterizing the effect of individual wheels are extracted to formulate multiple probabilistic regression models (MPRMs) in terms of multi-kernel RVM, which accommodate both variables of vibration frequency and running speed. Compared with the general single-kernel RVM-based model, the proposed multi-kernel MPRM approach bears better local and global representation ability and generalization performance, which are prerequisite for reliable wheel defect detection by means of data acquired under different running-speed conditions. After formulating the MPRMs, we adopt a Bayesian null hypothesis indicator for wheel defect identification and quantification, and the proposed method is demonstrated by utilizing real-world monitoring data acquired by an FBG-based trackside monitoring system deployed on a high-speed trial railway. The results testify the validity of the proposed method for wheel defect detection under different running-speed conditions.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권2호
/
pp.785-804
/
2017
Due to various factors such as postures, facial expressions and illuminations, face recognition by videos often suffer from poor recognition accuracy and generalization ability, since the within-class scatter might even be higher than the between-class one. Herein we address this problem by proposing a hierarchical cascaded classifier for video face recognition, which is a multi-layer algorithm and accounts for the misclassified samples plus their similar samples. Specifically, it can be decomposed into single classifier construction and multi-layer classifier design stages. In single classifier construction stage, classifier is created by clustering and the number of classes is computed by analyzing distance tree. In multi-layer classifier design stage, the next layer is created for the misclassified samples and similar ones, then cascaded to a hierarchical classifier. The experiments on the database collected by ourselves show that the recognition accuracy of the proposed classifier outperforms the compared recognition algorithms, such as neural network and sparse representation.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3762-3781
/
2020
Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.
본 연구는 초등학교 6학년 학생들이 기하 증가 패턴을 탐구하는 상황에서 함수적 관계를 어떻게 인식하고 일반화하며 표현하는지에 대해 분석하였다. 연구 결과, 처음에는 학생들이 그림에 의존하여 문제를 해결하는 경향을 보였으나, 후속 항들을 탐구하는 과정에서 일반화에 대한 시도가 자연스럽게 나타났다. 또한, 패턴 탐구의 결과를 어떤 방식으로 표현하는지는 개인에 따라 차이가 있었는데, 이 표현 방식은 패턴을 일반화하고 유사 상황에 적용하는 과정에도 영향을 끼쳤다. 본 연구는 이러한 결과들을 토대로, 초등학교에서의 함수적 사고의 지도 방안에 대한 시사점을 제공한다.
Since query language is used as a handy tool to obtain information from a database, a more intelligent query answering system is needed to provide user-friendly and fault-tolerant human-machine Interface. Frequently, database users prefer less rigid querying structure, one which allows for vagueness in composing queries, and want the system to understand the intent behind a query. When there is no matching data available, users would rather receive approximate answers than a null information response. This paper presents a knowledge abstraction database that facilitates the development of such a fault-tolerant and intelligent database system. The proposed knowledge abstraction database adepts a multilevel knowledge representation scheme called the knowledge abstraction hierarchy(KAH), extracts semantic data relationships from the underlying database, and provides query transformation mechanisms using query generalization and specialization steps. In cooperation with the underlying database, the knowledge abstraction database accepts vague queries and allows users to pose approximate queries as well as conceptually abstract queries. Specifically. four types of vague queries are discussed, including approximate selection, approximate join, conceptual selection, and conceptual Join. A prototype system has been implemented at KAIST and is being tested with a personnel database system to demonstrate the usefulness and practicality of the knowledge abstraction database in ordinary database application systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.