References
- A. A. Dorogovstev, On application of a Gaussian random operator to random elements, Theory Probab. Appl. 30 (1986), no. 4, 812-814.
- H. W. Engl, M. Z. Nashed, and M. Zuhair, Generalized inverses of random linear operators in Banach spaces, J. Math. Anal. Appl. 83 (1981), no. 2, 582-610. https://doi.org/10.1016/0022-247X(81)90143-8
- H. W. Engl and W. Romisch, Approximate solutions of nonlinear random operator equations: Convergence in distribution, Pacific J. Math. 120 (1985), no. 1, 55-77. https://doi.org/10.2140/pjm.1985.120.55
- T. Guo, Module homomorphisms on random normed modules, Northeast. Math. J. 12 (1996), no. 1, 102-114.
- T. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258 (2010), no. 9, 3024-3047. https://doi.org/10.1016/j.jfa.2010.02.002
-
T. Guo and G. Shi, The algebraic structure of finitely generated
$L^0$ (${\cal{F}}$ , K)-modules and the Helly theorem in random normed modules, J. Math. Anal. Appl. 381 (2011), no. 2, 833-842. https://doi.org/10.1016/j.jmaa.2011.03.069 -
T. Guo and Y. Yang, Ekelands variational principle for an
$L^-0$ -valued function on a complete random metric space, J. Math. Anal. Appl. 389 (2012), no. 1, 1-14. https://doi.org/10.1016/j.jmaa.2011.11.025 -
Wu. Mingzhu, The Bishop-Phelps theorem in complete random normed modules endows with the (
${\varepsilon},{\lambda}$ )-topology, J. Math. Anal. Appl. 391 (2012), 648-652. https://doi.org/10.1016/j.jmaa.2012.02.037 - M. Z. Nashed and H. W. Engl, Random generalized inverses and approximate solution of random equations, In: A. T. Bharucha-Reid (Ed.) Approximate Solution of random equations, pp. 149-210, Elsevier /North-Holland, New York-Amsterdam, 1979.
- H. Olga and P. Endre, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, 2001.
- B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, New York, 1983.
- N. Shahzad, Random fixed points of K-set and pseudo-contractive random maps, Nonlinear Anal. 57 (2004), no. 2, 173-181. https://doi.org/10.1016/j.na.2004.02.006
- N. Shahzad, Random fixed point results for continuous pseudo-contractive random maps, Indian J. Math. 50 (2008), no. 2, 331-337.
- N. Shahzad and N. Hussain, Deterministic and random coincidence point results for f-nonexpansive maps, J. Math. Anal. Appl. 323 (2006), no. 2, 1038-1046. https://doi.org/10.1016/j.jmaa.2005.10.057
- A. V. Skorokhod, Random Linear Operators, Reidel Publishing Company, Dordrecht, 1984.
- D. H. Thang, Random Operator in Banach spaces, Probab. Math. Statist. 8 (1987), 155-157.
- D. H. Thang, The adjoint and the composition of random operators on a Hilbert space, Stoch. Stoch. Rep. 54 (1995), no. 1-2, 53-73. https://doi.org/10.1080/17442509508833998
- D. H. Thang, Random mappings on infinite dimensional spaces, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 51-73. https://doi.org/10.1080/17442509808834157
- D. H. Thang, Series and spectral representations of random stable mappings, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 33-49. https://doi.org/10.1080/17442509808834156
- D. H. Thang, Transforming random operators into random bounded operators, Random Oper. Stoch. Equ. 16 (2008), no. 3, 293-302.
- D. H. Thang and P. T. Anh, Random fixed points of completely random operators, Random Oper. Stoch. Equ. 21 (2013), no. 1, 1-20. https://doi.org/10.1515/rose-2013-0001
- D. H. Thang and T. N. Anh, On random equations and applications to random fixed point theorems, Random Oper. Stoch. Equ. 18 (2010), no. 3, 199-212. https://doi.org/10.1515/ROSE.2010.011
- D. H. Thang and T. M. Cuong, Some procedures for extending random operators, Random Oper. Stoch. Equ. 17 (2009), no. 4, 359-380.
- D. H. Thang and Ng. Thinh, Random bounded operators and their extension, Kyushu J. Math. 58 (2004), no. 2, 257-276. https://doi.org/10.2206/kyushujm.58.257
- D. H. Thang and Ng. Thinh, Generalized random linear operators on a Hilbert space, Stochastics 85 (2013), no. 6, 1040-1059. https://doi.org/10.1080/17442508.2012.736995
- D. H. Thang, Ng. Thinh, and Tr. X. Quy, Generalized random spectral measures, J. Theoret. Probab. 27 (2014), no. 2, 576-600. https://doi.org/10.1007/s10959-012-0461-0