• Title/Summary/Keyword: Replacement rate

Search Result 1,117, Processing Time 0.028 seconds

An Experimental Study on High Strength Concrete Using the LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 고강도 콘크리트에 관한 실험적 연구)

  • Kim, Byung-Chul;Cha, Tae-Gweon;Jang, Pan-Ki;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • Various display devices has been increasing also using waste LCD glass in accordance with the used developed, because circumstances that are most landfill or incineration, are needed research on recycling measure of the using waste LCD glass. Therefore, in this study, to try to assess the basic mechanical properties of concrete mixed with using waste LCD glass micropowder through the room mixed test. According to the study results, the more replacement rate increases, the characteristics of the concrete showed a tendency to decrease slightly. However, according to the small value, it is expected to improve the advanced experimental values by refining the grain size of the materials used to be processed into spheres.

Physical Properties and Sensory Evaluation of Muffins with Trehalose (트레할로스를 첨가한 머핀의 물리적 특성 및 관능평가)

  • Heo, Soo-Jin;An, Hye-Lyung;Lee, Kwang-Suck
    • Culinary science and hospitality research
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • The principal objective of this study was to develop the optimal recipe for muffins prepared with replacement of sucrose with trehalose. The effects of trehalose on properties and staling of muffins during storage days(0, 1, 3, 5 days) were evaluated in terms of height, volume, weight, specific volume, baking loss rate, crumbscan, colorimeter, texture analyzer and sensory evaluation. Crust thickness of muffins containing trehalose evaluated with crumbscan decreased as the content of trehalose increased. Lightness(L value) of muffins with trehalose increased for the storage days, but muffins without trehalose decreased. yellowness(b value) increased significantly as the trehalose content increased. Hardness value of muffins was reduced by adding trehalose; however, the resilience value of muffins with trehalose increased significantly. Finally, the sensory evaluation revealed that muffins with 25% of trehalose showed the best result in texture, taste and overall preference.

  • PDF

Design of a Multi-Protocol Gateway System Based on Low Power Wireless Communications (저전력 무선통신 기반 다중 프로토콜 게이트웨이 시스템 설계)

  • Hong, Sung-IL;Lin, Chi-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2006-2013
    • /
    • 2015
  • In this paper we propose a multi-protocol gateway system based on low power wireless communications. The proposed multi-protocol gateway system was designed to allow real-time monitoring and control of the on-site situation through wired and wireless networks by gathering information for streetlight power control and environmental monitoring. The sensing data using multi-sensors with composite processing that selectively used wired or wireless communication (e.g., CDMA, Ethernet (TCP/IP), GPS, etc.) were designed to act as intermediaries that transmitted to the main server through ZigBee. Inaddition, they were designed by separating a CPU board and baseboard to ensure low maintenance cost and ease of hardware replacement. The proposed multi-protocol gateway system's power, impact, continuous operation stability, and immunity test results obtained a normal operation success rate of over 95% and normal continuous operation results. Moreover, in the voltage drop test, instantaneous immunity test, and conductive RF electromagnetic field immunity test, it obtained an average rating result of "A".

An Experimental Study on Strength Development of Micro Grinding Fly-ash Mortar - Effect of Alkali Activator and High Temperature Curing on the Compressive Strength of Concrete - (미분쇄한 플라이애시 모르타르의 강도증진 방안에 관한 연구 - 알칼리 자극제와 고온양생이 강도에 미치는 영향 -)

  • Cho, Hyun-Dae;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Fly ash has the advantages, among others, of improving the characteristics of concrete, reducing the price of concrete products, improving the durability, and reducing hydration heat. However, when added in mass, it leads to problems such as insufficient concrete intensity, increase of AE use, and others, resulting in a limitation of the use volume. Therefore, this study is undertaken to solve the problems associated with themass use of fly ash through the high concentration powder ($4000{\sim}8000cm^2/g$) of fly ash, curing method, the addition of an alkali stimulation agent and others for the purpose of increasing the added value of the fly ash. The research showed that the intensity manifestation has an outstanding status, with the hydrates reaching a very stable condition if the rate of addition of a stimulation agent is appropriately used with the heightening of the fineness of the fly ash in the temperature range of $40^{\circ}C$, and if the applicable study is continued, it is likely to result ineffective value generation on the massive replacement of fly ash.

Effect of accelerators with waste material on the properties of cement paste and mortar

  • Devi, Kiran;Saini, Babita;Aggarwal, Paratibha
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Accelerators are used to speed up the construction by accelerating the setting time which helps in early removal of formwork thus leading to faster construction rate. Admixtures are used in mortar and concrete during or after mixing to improve certain properties of material which cannot be achieved in conventional cement mortar and concrete. The various industrial by products make nuisance and are hazardous to ecosystem as well. These wastes can be used in the construction industries to reduce the consumption of cement/aggregates, cost; and save the energy and environment by utilising waste and eliminate their disposal problem as well. The effect of calcium nitrate and triethanolamine (TEA) as accelerators and marble powder (MP) as waste material on the various properties of cement paste and mortar has been studied in the present work. The replacement ratio of MP was 0-10% @ 2.5% by weight of cement. The addition of calcium nitrate was 0% and 1%; and variation of addition of TEA was 0-0.1@ 0.025% and 0.1-1.0@ 0.1% by weight of cement. On the basis of setting time, some mix proportions were selected and further investigated. Setting time and soundness of cement paste; compressive strength and microstructure of mortar mix of selected mix proportions were studied experimentally at 3, 7 and 28 days aging. Results showed that use of MP, calcium nitrate, TEA and their combination reduced setting time of cement paste for all the mixes. Addition of calcium nitrate increased the compressive strength at all curing ages while MP and TEA decreased the compressive strength. The mechanism of additives was discussed through scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis of the specimens.

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

MINI-IMPLANTS TO RESTORE MISSING TEETH IN SEVERE RIDGE DEFICIENCY AND SMALL INTERDENTAL SPACE (치조정 골 소실이 심한 경우와 치간 사이 공간이 부족한 경우에서의 미니 임프란트 식립)

  • Seo, Mi-Hyun;Yoo, Chung-Kyu;Lee, Eun-Kyung;Jung, Da-Unn;Suh, Je-Duck;Chung, Il-Hyuk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.67-70
    • /
    • 2009
  • Purpose: This study presents the use of mini implants for fixed restoration and implant supported overdenture to enable the practitioner to overcome the anatomic obstacles of ridge width and narrow interdental space. Patients and methods: This study consisted of 9 patients who required single implants for one or two teeth replacement and 1 patient who required implant supported overdenture after mandiblectomy, iliac bone graft due to ghost cell tumor. The ages ranged from 29 to 70 years (mean 51). All patients were in good health. Clinical and radiographs were taken pretreatment, postoperatively, during rehabilitation, and at follow ups. Results: Total implant survival rate was 94.7%. One implant was removed due to its mobility as a result of bad bone quality (Type IV) and patient's carelessness (Heavy smoker). All patients except one reported complete satisfaction regarding to function, aesthetics, and phonetics. Radiographic follow up every 3months postoperatively showed success in achieving function and maintaining marginal bone level. Conclusion: Clinician can overcome both severe ridge deficiency and small interdental space with mini implant.

Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test (1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과)

  • Sim, Sung Hun;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

Effect of Fiber Addition for Improving the Properties of Lightweight Foamed Concrete (경량 기포콘크리트의 성능향상에 대한 섬유혼입의 영향)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The objective of this study is to develop mixture proportioning approach of crack controlled lightweight foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved lightweight concrete blocks (class 0.6 specified in KS). To control thermal cracks owing to hydration heat of cementitious materials, 30% ground granulated blast-furnace slag (GGBS) was used as a partial replacement of ordinary portland cement (OPC). Furthermore, polyvinyl alcohol (PVA) and polyamid (PA) fibers were added to improve the crack resistance of foamed concrete. The use of 30% GGBS reduced the peak value of hydration production rate measured from isothermal tests by 28% and the peak temperature of foamed concrete measured from semi-adiabatic hydration tests by 9%. Considering the compressive strength development, internal void structure, and flexural strength of the lightweight foamed concrete, the optimum addition amount of PVA or PA fibers could be recommended to be $0.6kg/m^3$, although PA fiber slightly preferred to PVA fiber in enhancing the flexural strength of foamed concrete.

A Study on the Mechanical Properties of Recycled Aggregate Concrete Mixed Steel Fiber (강섬유 혼입 순환골재 콘크리트의 역학적 특성에 관한 연구)

  • Shin, Yong-Seok;Cho, Cheol-Hee;Kim, Dae-Sung;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.131-137
    • /
    • 2009
  • The rate of recycling of waste concrete, which represents the majority of construction-related waste, is increasing. However, a general recognition of the inferior qualify of recycled aggregates and their lower grade of compressive strength, bending strength, shear strength, frost resistance and ductility make the application of recycled aggregates to structures insufficient. Therefore, this study conducted material and member experiments by adding steel fiber for the purpose of improving the properties of recycled aggregate concrete. To synthesize the experimental results, it was found that specimens with a 30% steel fiber admixture had levels of compressive strength, tensile strength and frost resistance that were equivalent to or higher than the standard specimen, and that concrete that had a 30% replacement of recycled aggregates with steel fiber was suitable for application to actual structures.