• Title/Summary/Keyword: Repetitive Control(반복제어)

Search Result 79, Processing Time 0.024 seconds

Real-time Implementation of a Fuzzy Tuning Discrete-Time Repetitive Control for a Direct Drive Robot (직접구동형 로보트에 대한 퍼지 튜닝 이산시간 반복제어의 실시간 구현)

  • Kim, Sung-Hyun;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.133-135
    • /
    • 1997
  • In this paper, a fuzzy tuning discrete-time repetitive control is suggested for a robot manipulator. Real-time implementation of this type of repetitive controller is also performed for a 2 link direct drive robot by using a real-time control system which consists of a real-time OS(Spectra), a single board computer, a communication board and an analog input/output board. First, it is shown that the tracking error is effectively reduced by discrete-time repetitive control. Second, the convergence performance is shown to be much improved by the suggested controller using real-time experimentations.

  • PDF

반복 제어법을 이용한 정밀 제어

  • 전도영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.461-465
    • /
    • 1996
  • In servo systems such as the computer hard disk, surface mountiong device and robot manipulators, the high precision and high speed are increasingly demanding. In these examples, the repeatable errors exist and the repetitive controller removes these errors effectively by adding signals calculated from the previous cycle errors to the existing feedback controller. The experimental results of the position tracking control and contact force control show that the repetitive control effectively improves the precision of mechanical servo systems.

  • PDF

Performance improvement of repetitive learning controller using AMN (AMN을 이용한 반복학습 제어기의 성능개선)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1573-1576
    • /
    • 1997
  • In this paper we present an associative menory network(AMN) controller for learning of robot trajectories. We use AMN controller in order to improve the performance of conventional learning control, e.g. RCL, which had studied by Sadegh et al. Computer simulations show the feasibility and effectiveness of the proposed AMN controller.

  • PDF

Multiple-Model Probabilistic Design for Centralized Repetitive Controllers of Multiple Systems (다물체시스템의 중앙집중 연속학습제어 복수모형 확률설계기법)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-105
    • /
    • 2011
  • This paper presents a method to design a centralized repetitive controller that is robust to variations in the multiple system parameters. The uncertain parameters are specified probabilistically by their probability distribution functions. Instead of working with the distribution functions directly, the centralized repetitive controller is designed from a set of models that are generated from the specified probability functions. With this multiple-model design approach, any number of uncertain parameters that follow any type of distribution functions can be treated. Furthermore, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed multiple-model design method produces a repetitive controller that is significantly more robust than an optimal repetitive controller designed from a single nominal model of the multiple system.

Reduction of Periodic Speed Ripple of Electric Machines Using Resonant Controller and Repetitive Controller (공진제어기와 반복제어기를 사용한 전동기의 주기적인 속도 리플 저감)

  • Jung, Sung-Min;Lee, Jung-Ho;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1434-1446
    • /
    • 2018
  • This paper presents new speed control strategy for periodic load torque injected in AC motor. If motor drive system has a periodic load torque, it causes a periodic motor speed ripple bringing about vibrations and noises. This paper proposed new control method consisting of PIR(proportional-integral-resonant) controller and repetitive controller. PIR controller controls DC, low frequency and fundamental components and repetitive controller controls other harmonics. The performance has been verified through computer simulations using MATLAB Simulink and experiments.

Genetic Synthesis and Applications of Repetitive Protein Polymers (반복단위 단백질 고분자의 유전공학적 합성 및 응용)

  • Park, Mi-Sung;Choi, Cha-Yong;Won, Jong-In
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 2007
  • This study introduces the characteristics and some applications of repetitive polypeptides, especially to the biomaterial, tissue engineering scaffolds, drug delivery system, and DNA separation systems. Since some fibrous proteins, which consist of repeating peptide monomers, have been reported that their physical properties are changed dramatically by means of temperature alteration or pH shifting. For that reason, fibrous protein-mimetic polypeptides, which are produced by the recombinant technology, can be applied to the diverse biological fields. Repetitive polypeptides can also be used in the bioseparation area such as DNA sequencing, because they make DNA separation possible in free-solution electrophoresis by conjugating DNA fragments to them. Moreover, artificial synthesis of repetitive polypeptides helps to demonstrate the correlations between mechanical properties and structures of natural protein polymer, which have been proven that repetitive domains are affected by the sequence of the repeating domains and the number of repeating subunits. Repetitive polypeptides can be biologically synthesized using some special cloning methods, which are represented here. Recursive directional ligation (RDL) and controlled cloning method (CCM) have been proposed as excellent cloning methods in that we can control the number of repetition in the multimerization of polypeptides and the components of repetitive polypeptides by either method.

Design and implementationof a fuzzy tuning discrete-time repetitive controller for a direct drive robot (직접구동형 로봇에 대한 퍼지 튜닝 이산시간 반복제어기의 설계 및 실시간 구현)

  • 김성현;김진현;안현식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.76-85
    • /
    • 1998
  • In this paper, a fuzzy tuning method of a control gain in the discrete-time repetitive controller is proposed for precise tracking control of a system whose reference signal is repetitive. The control gain is modified by fuzzy rules which use the magnitude and the variation ofthe maximum output error in the previous repetitive period. The proposed method is applied to a direct drive 2-axis SCARA-type robot and, it is illustratedby computer simulations and real-time experimentation that better performance can be obtained that the fixed gain-based repetitive controller.

  • PDF

Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation (오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증)

  • Lee Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Design of Odd Harmonic Repetitive Controller for Uninterruptible Power Supply (무정전 전원장치를 위한 홀수고조파 반복제어기의 설계)

  • Yoon, Chun-gi;Cho, Younghoon;Lim, Seung-beom
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.147-148
    • /
    • 2015
  • This paper presents an odd harmonic repetitive controller for single-phase UPS inverters. The proposed repetitive controller achieves the low output voltage THD and reduces the steady-state error by eliminating odd harmonic distortions caused by nonlinear and unbalanced loads. The proposed control scheme is verified through experiment using a 5kW single-phase T-type inverter.

  • PDF