Learning effect is an observation that the more times a task is performed, the less time is required to produce the same amount of outcomes. The construction industry heavily relies on repeated tasks where the learning effect is an important measure to be used. However, most construction durations are calculated and applied in real projects without considering the learning effects in each of the repeated activities. This paper applied the learning effect to the repeated activities in a small sized apartment construction project. The result showed that there was about 10 percent of difference in duration (one approach of the total duration with learning effects in 41 days while the other without learning effect in 36.5 days). To make the comparison between the two approaches, a large number of BIM based computer simulations were generated and useful patterns were recognized using machine learning algorithm named Decision Tree (See5). Machine learning is a data-driven approach for pattern recognition based on observational evidence.
In the present study, we apply the multiple cue probability learning (MCPL) paradigm to examine consumer learning from feedback in repeated trials. This paradigm is useful in investigating consumer learning, especially learning the relationships between the overall quality and attributes. With this paradigm, we can analyze what people learn from repeated trials by using the lens model, i.e., whether it is knowledge or consistency. In addition to introducing this paradigm, we aim to demonstrate that knowledge people gain from repeated trials with feedback is robust enough to weaken one of the most often examined contextual effects, the asymmetric dominance effect. The experiment consists of learning session and a choice task and stimuli are sport rafting boats with motor engines. During the learning session, the participants are shown an option with three attributes and are asked to evaluate its overall quality and type in a number between 0 and 100. Then an expert's evaluation, a number between 0 and 100, is provided as feedback. This trial is repeated fifteen times with different sets of attributes, which comprises one learning session. Depending on the conditions, the participants do one (low) or three (high) learning sessions or do not go through any learning session (no learning). After learning session, the participants then are provided with either a core or an extended choice set to make a choice to examine if learning from feedback would weaken the asymmetric dominance effect. The experiment uses a between-subjects experimental design (2 × 3; core set vs. extended set; no vs. low vs. high learning). The results show that the participants evaluate the overall qualities more accurately with learning. They learn the true trade-off rule between attributes (increase in knowledge) and become more consistent in their evaluations. Regarding the choice task, there is a significant decrease in the percentage of choosing the target option in the extended sets with learning, which clearly demonstrates that learning decreases the magnitude of the asymmetric dominance effect. However, these results are significant only when no learning condition is compared either to low or high learning condition. There is no significant result between low and high learning conditions, which may be due to fatigue or reflect the characteristics of learning curve. The present study introduces the MCPL paradigm in examining consumer learning and demonstrates that learning from feedback increases both knowledge and consistency and weakens the asymmetric dominance effect. The latter result may suggest that the previous demonstrations of the asymmetric dominance effect are somewhat exaggerated. In a single choice setting, people do not have enough information or experience about the stimuli, which may lead them to depend mostly on the contextual structure among options. In the future, more realistic stimuli and real experts' judgments can be used to increase the external validity of study results. In addition, consumers often learn through repeated choices in real consumer settings. Therefore, what consumers learn from feedback in repeated choices would be an interesting topic to investigate.
In this paper, the repeated learning technique of neural network was used for gripping force control algorithm. The hybrid control system was introduced and the manipulator's finger reorganized form 2 ea to 3 ea for comfortable gripping. The data was obtained using the gripping force of repeated learning techniques. In the fucture, the adjustable gripping force will be obtained and improved the accuracy using the artificial intelligence techniques.
목적: 치과 임플란트 캐드 소프트웨어를 이용하여 맞춤형 지대주 디자인 시에 소요되는 시간과 반복학습의 관계를 평가하는 것이다. 연구 재료 및 방법: 맞춤형 지대주 디자인은 3DS 캐드 소프트웨어와 EXO 캐드 소프트웨어를 사용하여 지정된 4개의 단계 순으로 시행되었고, 단계별로 3회 반복 측정하였다. 반복학습에 의한 학습효과는 학습곡선으로 나타냈고, 반복학습에 따른 디자인 시에 소요되는 총 시간과 단계별 소요되는 시간의 감소가 유의한지는 Friedman 검정과 사후검증(Wilcoxon signed rank test)으로 평가하였다. 디자인 시간과 군간의 차이는 반복 측정 이 요인 분석으로 평가하였다. 통계 분석은 SPSS 통계 소프트웨어를 사용하여 수행하였다(P < 0.05). 결과: 맞춤형 지대주 디자인의 반복학습은 횟수와 단계에 따라 유의한 차이를 나타냈다(P < 0.001). 디자인 시간에 따른 차이는 유의한 것으로 나타났으며(P < 0.001), 캐드 소프트웨어 간의 차이도 유의한 것으로 나타났다(P = 0.006). 결론: 캐드 소프트웨어의 반복학습은 디자인 시간을 단축하였고 디자인 평균시간은 3DS 캐드가 EXO 캐드에 비하여 더 적게 소요되었으나, 학습효과에 따른 학습률은 EXO 캐드가 3DS 캐드보다 좋은 결과를 보였다.
이 연구에서는 학습자가 수학 텍스트를 반복하여 읽을 때 나타나는 수학 학습 과정이 어떻게 변하는지를 조사하였다. 또한 수학 학습 방법으로써 반복 읽기의 효과를 점검하고 보다 효율적인 반복 읽기 교수·학습 전략에 대한 시사점을 모색하였다. 반복 읽기 수학 학습에는 국립대학교 수학교육과에 재학 중인 예비 수학교사 8명이 참가하였다. 예비 수학교사는 각각 4개의 그룹으로 구성되어 그룹에 따라 서로 다른 4개의 주기로 총 3회 반복 읽기를 시행하였다. 수학 학습 자료 읽기 과정에서 나타나는 예비 수학교사의 시선의 움직임을 추적하고 심박수를 측정하였다. 수집한 자료를 회차별 총 읽기 시간, 슬라이드별 총 읽기 시간, 각 회차와 슬라이드별 총 읽기 시간의 변화 추세, 슬라이드 읽기 순서, 회차별 심박수 변화 추세 등의 다섯 가지 측면에서 분석하였다. 첫 번째 읽기에서는 참가자의 대부분이 비슷한 양상을 보였으나, 두 번째와 세 번째 읽기에서는 개별 학습자에 따른 읽기 패턴의 변화가 보다 다양하게 드러났다. 또한, 첫 번째 읽기에서 반복 주기와 무관하게 가장 많은 시간이 소요되었고, 이후 반복적 읽기 시간에서는 개인별로 차이가 나타났다. 연구 결과에서 도출한 가장 중요한 결론은 반복 읽기를 통한 자기 주도적 수학 학습은 주기와 관계없이 효과적이라는 것이다. 추가적으로 반복 읽기 교수·학습 전략의 효율성을 증진시키기 위한 네 가지 전략을 제안하였다.
Usually, robot manipulators in production lines are operated with reperting work trajectories. This paper presents the repeated adaptive learning algorithm for robot manipulates for the case of a trajectory. This algorithm uses the nonlinear dynamic model including the repeated friction compensating term, The advantage of the scheme is that It allows friction compensation which may be otherwise difficult for differently constructed models. A secondary advantage of the sheme is that it can also adapt to torque calculation in order to reduce the computational load of the control computer. To show the efficiency of the proposed controller, a computer simulation is performed for the planar robot manipulator with a 2 degree of freedom.
오류역전파 방법을 이용하는 신경망들은 패턴들의 학습시간이 매우 오래 걸리고 또한 추가학습과 반복학습의 한계를 가지며, 이런 단점을 보완할 수 있는 이진신경망(Binary Neural Network, BNN)이 Aleksander에 의해 제안되었다. 그러나 BNN도 반복학습에 있어서는 단점을 가지고 있으며, 일반화 패턴을 추출하기 어렵다. 본 논문에서는 BNN의 구조를 개선하여 반복학습과 추가학습이 가능할 뿐 아니라, 특징점들까지 추출할 수 있는 다중 판별자를 가지는 삼차원 뉴로 시스템을 제안한다. 제안된 모델은 기존의 BNN을 기반으로 하여 만들어진 이차원 특징을 가지는 Single Layer Network(SLN)에 귀환회로가 추가되어 특징점들을 누적할 수 있는 삼차원 신경망이다. 학습을 통해 누적된 정보는 판별자의 각 신경세포에 임계치를 조정함으로써 일반화 패턴을 추출할 수 있다. 그리고 생성된 일반화 패턴을 인식에 재사용함으로써 반복학습의 효율성을 높였다. 최종 판정 단계에서는 Maximum Response Detector(MRD)를 이용하였다. 본 논문에서 제안한 시스템을 평가하기 위하여 NIST에서 제공하는 숫자 자료를 이용하였으며, 99.3%의 인식률을 얻었다.
The iterative learning control synthesized in the frequency domain has been utilized for temperature control of a batch reactor. For this purpose, a feedback-assisted generalized learning control scheme was constructed first, and the convergence and robustness analyses were conducted in the frequency domain. The feedback-assisted learning operation was then implemented in a bench scale batch reactor where reaction heat is simulated using an electric heater. As a result, progressive reduction of temperature control error could be obviously observed as batch operation is repeated.
This study was performed to investigate the effect of red ginseng extract including some vitamin B groups as test drug on learning and memory in mice. Single and repeated administrations of the test drug improved the acquisition and the process of consolidation in the tests using step-through and step-down apparatus, indicating this test drug improved learning and memory. However, the test drug did not improve scopolamine-induced amnesia. These results suggest that test drug may be useful as a nootropic agent.
무선 이동통신 기술과 하드웨어 기술 등의 발전과 멀티미디어 처리기술의 발전에 따라 개인 맞춤형 e-Learning서비스가 필요하다. 특히 처음 프로그래밍을 접하는 학습자에게 개인 맞춤형 e-러닝 콘텐츠는 반드시 필요하다. 즉 프로그램 개발 능력을 학습하기 위해 많은 반복적인 실습이 요구되며, 학습자 개인에 따라 다양한 학습 효과를 보여주기 때문이다. 따라서 본 논문에서는 프로그래밍을 처음 배우는 학습자에게 적합한 개인 맞춤형 서비스를 가능하게 하면서, 프로그래밍이 수행되는 과정을 시뮬레이션 형태로 보여주어 학습 효과를 극대화할 수 있는 e-러닝 콘텐츠를 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.