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ABSTRACT

. . . ) X . ries precisely. After the pioneering work by
The iterative learning control synthesized in

Arimoto, many different learning control methods
the frequency domain has been utilized for tem ’
have been proposed [2 87, including the tirs:
perature control of a bateh reaclor. For {his
order learning, the second order learning an?
purpose, a feedback-assisted generalized learn
. the PI- type learning alyorithmg and so on
ing control scheme was constructed firsl, and

Most of the works, however, have been focus.
the  convergence and robustness analyses were

on finding open loop control signals. When the
conducted in the frequency domain. The feeod

ocour  unpredicted external disturbances, the
back assisted Jearning operation was then imple
, algorithms may fail to work,
mented in o a bench scale bateh resclor where
. Parposing for batch reactor control whey
reaction heat is simulated using an electric

various disturbances are introduced in an unex
beater. As a resull, progressive reduction of L

pocted manner, in this work, the existing open
Lemperature control error could be obviously B

Joop learning algorilhm is wod Cied First oo
ovbserved as batceh operslion is repeated. .
combining f[eadback control loop for disturbane.

rejection.  Formaloating a geoeral form of he
1. Introduction .
feedback-assisted learning algorithm, varien-
The balch  reactor, cspecially due to  its

learning  operation hints were then dedur
flexibility, is the most widely used type of re

through convergence und robustness snalyses |
actors in the chemical and the related indus )

frequency domain. Finally the proposed learnirg
Lries. Due to significant nonlinearity and large

algorithm was implemented to a s mulated hench
variation of operating conditions, howoever, con

scale bateh resclor for experimental evalual ior
trol of a balch reactor has long been considered

Tracking as well as regulatory controls haw
as oa diflicult and challengeable rescarch suls

been  attempted when  Lthere is  elgnificw
Ject in chemicnl engineering. Many of (he indus

reaction heat.,
Ltrial reactors still have re

sourse to open- loop

operation and/or conventional cascade feedback .

. IT. Frequency Domain Design of Feedback-Assisted

control, in some case with gain scheduling. Ad--
Learning Operation

vanced conlrol methods such as adaptive or non

Linear controls hoave been attempted bul. still
. . II-1. Learning Operation combined with Feedback
not in extensive use because of required adapl.a
. . . Control
Lion transients or difficully in process mode!
. Consider a SIS0 linear process shown in [ig.
ing. Based on the ahbove considerations, in the .
1, subjected to initial perturbation and exter
presenl work a new batch control method has been
nal disturbance d.
atiempted utilizing the iterative learning con- . .
. Dynuamics of the process con be written i
trol. The ijterative learning control algorithm

. . . the transformed domain as follows:
produces an improved open loop control signals

from the past operalion records such that the b B 1 W ol
y - A u o+ ry o+ Iy

tracking error is reduced as (he operation iter

ates, i.e., learning through experience.It was where y, u, d and w denote the outpul, snput,

originally developed by Arimoto et., al. [1] as a external disturbance and initial perturbation,

teaching mechanism of robol manipulotors which respectively. Variables in eq. (1) are funictions
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of''s or z according as the process is described

in continuous-time or discrete-time, respective-

ly. In continuous--time case, the initial pertur
bation w is expressed by
W s"T ) 2 s o) v Ly ) ()

Let the subscripl k denote the k-th operalion.
The
1

control input calculated by the first order

car ilerative  Jearning

operation can be ax-

pressed in the generic form as 07 lows:
4 I .
u u - - .
k~1 yd ¥ yk--’l G

is lhe refegence lrajeclory. [f

bine a feedback control with the learning opera

where Y4 we Com
.

Lion for disturbance rejection, then we have the
overall conlrol

the

loop as shown in Fig. 2. In Fig.

for feedback controller to be realizable

P
<
{causal), the following inequalily should hotd.

deg Rz dog S, deg T (4)

Casaulily is not required for the learning block

hecause  calceulaltion  is  performed with data
cecords from o past run.
through biock diagram analysis, it can be

casily derived that the updating equalion of y

is oas follows:

where Aw = w - w
k k

Adk

[1-2. Conditions for Convergence
The objective of the learning operation is to

drive Y, to converge Lo the reference trajectory

Y, #s k increases. To find the convergence con-
dition, we assume that Awk and Arlk in eq. (&)
are null, Under these agsumptions, it can bo
casily seen that

Hyk - yd|| —>0 as k —> ® (6)

when the following two conditions are satisfied.

L"D/J

B S .
o 1 i< {7
ST ¢ 1 (8)

R B ¥
Equation (7) is the condition for the sequence

;’yk} to have a limit. Equation (8) is the condi

tion for Yy to be the limit. In egs. (6) and
(73, H II denotes an appropriate norm for the
function space concerned. In conti nious—time

1278

case, signals are defined over a time segment

{0,1]

ponents

and thus have only discrete frequency com-
mk:(ZTI/T)k, k=0,1,2,
discrete-time signals are defined over a

.Nh}, where Nh=1

at Likewise,
finite
discrete time sequence {0,h,2h,.
and thus have
0, 1, 2,

one of the useful

inlerval,

= (2m/Nk, k -

and h is the sampling
frequency components

., N-l.

)
atl «
Bearing these in mind,

bt consistent norm definition will be

[fllzsupl (@ )],

W
C

(2rn/T)k  0,1,2,.. for continuous- time

(2r/NYk  0,1,..,N 1 for discrete time (9)

Based on this norm definition, Lhe condition {(7)
cun be rewritten as
B(s)b(s) B{s)8(s)
1 - /1 L <4
| A(s)K(s) A(s)H(s) §j (2/T )k
k -0, 1, 2, (10)
for continuous-time case and
| B/z)D(/)/ 4 B(z)5(2) <1,
Al{z)F(z) Alz)R(z) FATIN) %
PR &
k 0, 1, 2,..., NI (1)
for discrele-time case, regpectively.
1I-3. Design of the Controller Blocks
When the plant model HB/A is exactly known,
maximum convergence rate is oblained when
1 A ;
- i2
I B (1)
The condilion (8), in this case, becomes
C A .
z .. A 13
B D (s
From Lhe causality condition (4) and the fact
deg A 2 deg B, an obvious way Lo salisfy eq.
(13) is
o C . A (14)
5 o= T and P

In practical situations, only an approximate

process model

is available. Model error, though
small or large, is inevitably introduced. Let
B /A’ be the nominal process model. Then Lhe
learning block will bo changed to
—_ A’
YW TN Ty [yd B yk—1] (s

Figure 3 shows the learning control scheme com-

bined with feedback loop proposed through this

analvsis. Loop analysis shows Lhe ileral ive up



dating procedure ot y for the proposed learning

control scheme is

b s J, -84 Bpa 8
[1+A}l] yk"’[l B’] T [n’ 'R] Ya

(16)

Equation (16) guarantees thal the limit of the

sequence (yk) becomes y, once the sequence con—

voerges.

iI-4. Effect of Model Error on Convergence
Condition

Let's express the model error by an additive

term as follows:

SEIRETY

Substitution of

(17)

(7
(12) with A'/B’ gives

eqs. (12) and (17) into eq.

while replacing A/B in eq.

B S

§ ——

AR

BEw am

||<lor‘ AR

[faff <l 1

It a/1

Byuation (18) tells the maximum allowable model
error for convergence is bounded by HIDUS/AMI
To investigate how the error bound varies with
frequencies, let’s confine our concerns Lo the
continuous-time case.

Frequency characteristics of a typical open-
loop gain BS/AR with. an integral model in Rand
the corresponding model error bound are shown in
Fig. 4. Although

components at wk:(Zn/T)k, k=0,1,2,...

only the discrete {requency

should be

considered in this figure, we neglect this fact

and consider the whole continuous frequency

spectum for simplicity of enalysis. From this

tigure, we can see that large model error is

allowed in low frequency range. This says in

turn fast convergence can be achieved for low
increases,

frequency signals. As the frequncy

however, the open-loop gain gels small making

approach to 1.

the

tolerable model error bound
Especially around the crossover frequency,

error bound has the minimum value about |1
1/GM|, where GM is the gain margin of the loop.

Although relative model error of aboul 100% is
tolerable at high frequencies, it can be thought
to be stringent in practice because precise mod-
eling of high frequency behaviors is usually not
so casy while the low frequency behaviors can be

uccurately characterized.

11-5. Bffect of Disturbance and Initial

Perturbation
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Disturbances including initial perturbation
may sericusly deteriorate learning operation.
From eq. (5), we see that their effect on Y, is
according to ((B/A)Adk+Awk/A)/(l+BS/AR).

aspectl

An  imporlant noticed

that

in eq. (85) is

disturbance acts as a difference term in
In the linear de-
(1), the dis-
turbance term d may be considered to include un—

the

iwo subsequent iterations.

scription of a process as in eq,

modelled part of process such as higher

order dynamics and/or nonlinear residual term as

well as true external disturbance. Tn the former

case, once the learning algorithm starts to con—
verge, the disturbance appears similarly at each

iteration. Accordingly the disturbances are

self-eliminated and exert only a minor effect

on vy . This tells that the learning control

scheme may work well for a large class of non-

linear processes, too.

Occurence of initial perturbation and exter-
nal disturbunce does not change the convergence
conclition. A well-designed feedback control loop
can properly suppress their effects.

[1-6. Design Examples
In this section, we present some design exam—

ples. Through these examples, we want to draw

design and  operation hints for learning

operation. Only the continucus-time cases are

considered for demonstration.

[Example 1] Continuocus—time first-order system

Assume that B/A = K/(ts+l) and B’/A’ =

K’ /(¢’s41). The model error is A = %,1,::} - 1.
K t'stl . -

Here BT ;+] is a linear fractional(Mobius)

transformation and maps s=jw, w € (~®, ® ) on
the circle as shown in Fig. 5.

Convergence is gauranteed if the image is
contained in the circle with center at (1,0) and
radius 1/GM. If the open~loop has no crossover
frequency or only the learning block is used
without the feedback loop, the convergence re-—
gion will be the open unit disk with center at
(1,0). Notice that this condition is ony the
gufficient. one. At low frequency range, modulus
of the map can exceed the disk: see Fig. 4.

From Fig. 5., we can draw simple modeling

hints: Overestimation or underestimation of both

K and T is safer than overestimation of K with
underestimation of t or vice versa.
[Example 2] When Lhe order of the process

transfer function is not exactly known.



Assume that the process is of second-order

while it is modeled ms first—-order, i.e., B/A =
2
K/(t°s%+2Crs+1) and B'/A’ = K’ /(¢v’st1). The mod-
, ' on
el error will be & = %,—1 :5—7,—5"—'1-_— -1
~ K% +20Ts+1

In this case mapping of s=jw, w = (~®,®) by 4 is

not as simple as in Example 1. However, we know
BA' s - -

that A0 | s jw starts at K/K’ when w = 0, ap

proaches to the origin as w goes to infinity

while the image stays only in first and/or

Since the allowable model er-

disk of (1,0) with

fourth quadrants.
center at
4(b),

conditionally convergent depending

ror bound is =&

varying diameter as in Fig. this loop

bLecomes on

the parameters, especially on (.
1t B/A

u'/A°

the of is larger than that of

BA’
AW’ | s jw
left-half complex plane and the convergence is

order

by more than one, intrudes the
violated.

In case that the order of the process trans-
ter function is ol

the

is overestimated, e.g., B'/A’

second-order while B/A is of first-order,

loop cannot satisfy the condition

Ba’
AB’
increases.

convergence

because . goes to infinity as «
57 J0

From the above considerations, we can notice
that overestimation of the process order should
be avoided. Underestimation of the process order
may be allowed but the order difference should
be less than two.
[Bxample 3] Process with time-delay

Assume that B/A = K e"du/(tstl) and B’ /A’ =

K'e‘d’“/(T’s+l). Then the model error will be A
Ba' . K T’stl -(d-d’)s_ BA'

= T 1= R'T st 1. Map of B’ s+ j

will look like Figs. 6{(a) to B(d). We can see

that the learninig operuation

can never satify

the convergence condition as far as time-delay
error exisis. We can see, however, that conver-
gence violation is less serious when (KU'/K't) <
(K/K') compared (KT’ /K'Y >

~(K/K'). Especially,

to the case when

in the former case, conver-
gence violation is minimized if T’=0.

Actually convergence violation means that
only the signal components over a certain fre-
quency diverge as iteration continues while the
still

From this consideration and by noting that

remaining signal components converges.

the
process signals are usually composed of low fre-
quency components, we c¢an draw an important
operation hint.

Stop learning if high frequency signals

start to grow and take u at the last iteration
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ag feedforward compensation signal.

Compared to the feedback-only—-control, this

method would still improve the control perfor-

mance significantly.

I11. Experimental Evaluation

IXI-1. Experimental Apparatus and Conditions
Figure 7 shows the schematic diagram of the
experimental setup. The reactor is equipped with
a cooling coil and an electric heater. Reaction
heatl is gimulated by an electric heater and the
reactor temperature is controlled by the cooling
water control valve. Temperature tracking as
well as regulation have been attemped in the ex—
periments. In both

cases, severe reaction heat

is applied in 4 predefined pattern.

n the respective experiment, PID cont i
cunéucte( AU e e BTN and t%en the 52§r%§
ing
batches.

is introduced in

The

mode the subsequent

parameters for the PID and the

learning block were determined based on  the

open—loop Ltransfer function of the reactor. In
able 1, the learning block eguation used in the
experiments are given along with the open-loop
transfer function and physical dimensions of the
reactor system. The steady state gain, however,
chenges significantly with valve position due to
the

conlrol valve.

implemented characteristics of the linear

I1I-2. Results and Discussions

kesults of the regulatory experiment and the
reaction heat applied during the run are shown
8, 9 and 10,

seen in Fig. 8,

in Figs. respectively. As can be

at the first batch the PID con-
Lroller can not effectively reject the heat dis-—
turbance and relatively large temperature excur-
sion results. After learning algorithm starts to
work, it is clearly seen temperature control er—

ror becomes reduced more and more as batch is

repeated. The control signals as shown in Fig.
9, however, get more oscillatory as learning it-
erates., It is thought to come from the deriva-
tive action of the learning algorithm.

1 to 13,

the Lracking experiments are sumerized. The PID

In Figs. results and heat input for
control in the first batch produces oscillatory
responsc fighting against the heat input. In ad-
dition, declayed responses are are observed in
the ramps, a well known property of the PID con-

troller. As the feedforward signal by the learn-



ing mode is injected in the second batch, the

response is greatly improved producing better

tracking, less oscillation and smaller control

error. As the batch continues, however, larger

control error occurs. The experiment has been

tried several times, but the similar results
have been obtained every time. Especially, in

the third and fourth batches, large devialion
results Jjust after the initial ramp and around
After 1,200 sec, the

to follow the

the end of the cycle time.

reactor temperature secems set
point change very nicely but slops tracking with
large deviation, redering the post-correction Lo
the PID mode. Currently, it is not clear what is
the main cause of this performance degradation,
but the follwing two different causes can be
conceivable. One is violation of the convergence
condition and the other is accumulation of dis-

(56).

the learning operation need not be iter-

turbance effects, see eq. In practice, how-
ever,
ated endlessly. Once a satisfactory control per—
formce is obtained, il is enough to stop the
learning mode and take the control signal as the
feedforward compensating input for Lhe succeed-
in-

ing operations. Figure 13 shows the control

puts for the repeatitive learnings. As was in

Fig. 13,
latory as learning is repeated

the control input becomes more oscil-

IV. Conclusions

The existing firtst-order learning conlrol is
revised by combining feedback control loop for
utilization in a chemical batch reactor. Some of
the important consequences obtained by anlayzing
the feedback- assisted learning algorithm in the
and experimental

frequency domain through

evaluation in a bench-scale batch reactor are ans
follows:

1. The best convergence for the learning opera-
tion can be obtained when the inverse process
transfer function is operated on the previous
control error.

2. When there is error in delay estimation, con-
vergence is always violated. The violation, how-
ever, occurs at high frequency range o the
learning operation still may help improve the
control performance if the iteration continues

only until a clue of performance degradution

starts to appear.

3. The feedback-assisted learning control is

proved to be useful in improving tracking as

well as regulation performance of batch reactor
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lemperature. As the iteration continues, how-
ever, control signals gets oscilltory.
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Table 1. Experimental System and Conditions

Reactor Vol.: 3.5 1 Control Valve: linear,Cv=0.5
Initial Steady States :
1.0 Kw

1.3 Kw

Regulatory Control 8 % valve open,

I'racking Control 20 % valve open,

Open Loop T.F. 0.17(C/%) Pfl.](min)s

1.0 kw O(min)stl ©

at 8 % valve open,

Learning Algorithm
Regulatory Control

uk+1(q): uk(q) + ]OO(ek(q+3)~0.97 ek(q+2))
Tracking Control

Gk’l(q): u (@) + 20 (e, (4+3)-0.95 e (a+2))

Sampling Interval: 30 sec

B /A

Fig. 1 SIS0 linear process.



Fig. 2. Block diagram of feedback-assisted learning

control loop.

S/R

B/ A

Fig. 3. Porposed learning control scheme.

W

Fig. 4. Bode plot of a typical open~loop transfer
function (a) and allowable model error

bound for convergence (b).
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Fig. 7. Schematic diagram of the experimental system.
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Fig. 8. Reaction temperature changes (regulation).
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