• 제목/요약/키워드: Repeated Power Flow(RPF)

검색결과 6건 처리시간 0.024초

과도 안정도를 고려한 총 송전용량 평가 (Assessment of Total Transfer Capability Considering Transient Stability)

  • 박진욱;배인수;김진오;김규호
    • 조명전기설비학회논문지
    • /
    • 제19권7호
    • /
    • pp.94-99
    • /
    • 2005
  • 본 논문은 기존의 총 송전용량 결정에 있어서 고려하기 어려웠던 과도 안정도 제약을 판별법을 적용하기 위해 2단계 계산 기법을 이용하여 보다 용이하게 적용하였다. 총 송전용량을 계산하기 위한 방법으로 첫 번째 단계에서는 RPF(Repeated Power Flow) 방법을 이용하여 전압과 열적한계를 판별하고, 두 번째 단계에서는 첫 번째 단계에서 결정된 총 송전용량이 시스템의 과도 안정도 조건의 위반여부를 판별하여 시스템의 총 송전용량을 결정하였다.

과도에너지 함수를 이용하여 연계계통의 총송전용량 평가를 위한 최적화기법 응용 (Optimization Application for Assessment of Total Transfer Capability Using Transient Energy Function in Interconnection Systems)

  • 김규호;김수남;이상봉;이상근;송경빈
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2311-2315
    • /
    • 2009
  • This paper presents a method to apply energy margin for assesment of total transfer capability (TTC). In order to calculate energy margin, two values of the transient energy function have to be computed. The first value is transient energy that is the sum of kinetic and potential energy at the end of fault. The second is critical energy that is potential energy at controlling UEP(Unstable Equilibrium Point). It is seen that TTC level is determined by not only bus voltage magnitudes and line thermal limits but also transient stability. TTC assessment is compared by the repeated power flow(RPF) method and optimization method.

과도 안정도를 고려한 가용송전용량(ATC) 계산에 관한 연구 (A Study on The Available Transfer Capability(ATC) with Transient Stability Constraints)

  • 김양일;정성원;김재현
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.437-443
    • /
    • 2009
  • In recent years, electric power systems have been experiencing a rapid change due to the increasing electricity market. For the effective use of power system under the deregulated environment, it is important to make a fast and accurate calculation of the maximum available transfer capability (ATC) from a supply point to a demand point. In this paper, the purpose of this research is to calculate ATC fast and accurately for securing the stability of system and raising the efficiency as a result of anticipating transmission congestion according to transmission open access progressed in the future under the regulated environment of electricity market. In this paper, a study utilized a relation of the potential energy and energy function by which calculated CCT and then utilized a relation of PEBS for transient stability ATC calculation. In this paper, ATC was calculated as RPF and Energy Function method and calculation results of each method was compared. Contingence ranking method decided the weak bus by the Eigenvalues of Jacobian matrix and overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering transient stability suggested in this paper. Through the case study using New England 39 bus system, it is confirmed that the proposed method can be used for real time operation and the planning of electric market.

Performance Comparison of GA, DE, PSO and SA Approaches in Enhancement of Total Transfer Capability using FACTS Devices

  • Chandrasekar, K.;Ramana, N.V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.493-500
    • /
    • 2012
  • In this paper the performance of meta-heuristics algorithms such as GA (Genetic Algorithm), DE (Differential Evolution), PSO (Particle Swarm Optimization) and SA (Simulated Annealing) for the problem of TTC enhancement using FACTS devices are compared. In addition to that in the assessment procedure of TTC two novel techniques are proposed. First the optimization algorithm which is used for TTC enhancement is simultaneously used for assessment of TTC. Second the power flow is done using Broyden - Shamanski method with Sherman - Morrison formula (BSS). The proposed approach is tested on WSCC 9 bus, IEEE 118 bus test systems and the results are compared with the conventional Repeated Power Flow (RPF) using Newton Raphson (NR) method which indicates that the proposed method provides better TTC enhancement and computational efficacy than the conventional procedure.

에너지 함수를 이용한 총송전용량 평가 (Assessment of Total Transfer Capability Based on Energy Function)

  • 김규호;김수남;이상봉;이상근;송경빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.241_242
    • /
    • 2009
  • This paper presents a method to assess total transfer capability (TTC) by using energy function. To get the critical energy, the potential energy boundary surface(PEBS) method which is one of the transient energy function(TEF) method is used. TTC assessment is to calculate TTC by using the repeated power flow (RPF) method. It is seen that energy margin can be use to assess available transfer capability(ATC).

  • PDF

에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구 (A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method)

  • 김재현;정성원;김양일
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.94-100
    • /
    • 2008
  • 가용송전용량(ATC)은 계통내의 한 지역에서 다른 지역까지 실제 전력을 증가시키는 것이다. 지금까지 ATC 계산은 대부분 정상상태에서 실행가능성을 주로 고려하여 계산되어 왔다. 하지만 ATC 평가시 과도안정도로 제약된 ATC 계산은 매우 중요한 부분이다. ATC 평가시에는 제약조건으로 열적용량, 전압 및 과도안정도로 제약된 상정사고(n-1)시 안전도 평가가 요구된다. 본 논문은 자코비안 행렬의 고유치를 이용하여 상정사고 우선순위를 선정하였고, 에너지 함수법을 이용하여 선로의 열적용량, 전압안정도 및 과도안정도를 고려한 ATC를 계산하였다.