• Title/Summary/Keyword: Repair of Regulation

Search Result 131, Processing Time 0.028 seconds

A Study on Performance of Protective Gloves to Isocyanate Toxicity (이소시안화물 독성에 대한 보호장갑의 성능 연구)

  • Lee, Su-Gil;Pisaniello, Dino;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.62-69
    • /
    • 2008
  • As the concerns of dermal exposure of spray painters to isocyanates in the automobile industry, glove performance was examined like permeation rate and breakthrough time including fatigue test. Methylene chloride was used as the solvent for derivatization of the isocyanates with a 97.5% recovery. Ghost wipe pads were used to wipe the surface of the glove material after chemical penetration through the glove material placed under a disposable test cell. Several solvents were tested, such as thinner(xylene, toluene) and cleaning agent(acetone) by using a standard permeation test cell(AS/NZS standard 2161. part 10.3). Solvents accelerate chemical permeation through the gloves more quickly than pure HDI hardener products. The longest breakthrough times were from Nitrosolve gloves, not detected in 8 hours, compared with others like Latex, Neoprene, TNT and Dermo Plus. Therefore Nitrosolve gloves could be recommended as personal protective equipment in crash repair shops. In addition, revised exposure limit of korean regulation should be suggested for employee to minimize the risk of health symptoms.

Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair

  • Li, Dandan;Ye, Lin;Lei, Yue;Wan, Jie;Chen, Hongyan
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.208-213
    • /
    • 2019
  • Chemoresistance is the primary obstacle in the treatment of locally advanced and metastatic nasopharyngeal carcinoma (NPC). Recent evidence suggests that the transcription factor forkhead box M1 (FoxM1) is involved in chemoresistance. Our group previously confirmed that FoxM1 is overexpressed in NPC. In this study, we investigated the role of FoxM1 in cisplatin resistance of the cell lines 5-8F and HONE-1 and explored its possible mechanism. Our results showed that FoxM1 and NBS1 were both overexpressed in NPC tissues based on data from the GSE cohort (GSE12452). Then, we measured FoxM1 levels in NPC cells and found FoxM1 was overexpressed in NPC cell lines and could be stimulated by cisplatin. MTT and clonogenic assays, flow cytometry, ${\gamma}H2AX$ immunofluorescence, qRT-PCR, and western blotting revealed that downregulation of FoxM1 sensitized NPC cells to cisplatin and reduced the repair of cisplatin-induced DNA double-strand breaks via inhibition of the MRN (MRE11-RAD50-NBS1)-ATM axis, which might be related to the ability of FoxM1 to regulate NBS1. Subsequently, we demonstrated that enhanced sensitivity of FoxM1 knockdown cells could be reduced by overexpression of NBS1. Taken together, our data demonstrate that downregulation of FoxM1 could improve the sensitivity of NPC cells to cisplatin through inhibition of MRN-ATM-mediated DNA repair, which could be related to FoxM1-dependent regulation of NBS1.

Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1

  • Ruthenborg, Robin J.;Ban, Jae-Jun;Wazir, Anum;Takeda, Norihiko;Kim, Jung-Whan
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.637-643
    • /
    • 2014
  • Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

Enzymatic DNA oxidation: mechanisms and biological significance

  • Xu, Guo-Liang;Walsh, Colum P.
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.609-618
    • /
    • 2014
  • DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

Egr-1 regulates the transcription of the BRCA1 gene by etoposide

  • Shin, Soon Young;Kim, Chang Gun;Lee, Young Han
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.92-96
    • /
    • 2013
  • The breast cancer susceptibility gene BRCA1 encodes a nuclear protein, which functions as a tumor suppressor and is involved in gene transcription and DNA repair processes. Many families with inherited breast and ovarian cancers have mutations in the BRCA1 gene. However, only a few studies have reported on the mechanism underlying the regulation of BRCA1 expression in humans. In this study, we investigated the transcriptional regulation of BRCA1 in HeLa cells treated with etoposide. We found that three Egr-1-binding sequences (EBSs) were located at -1031, -1005, and -385 within the enhancer region of the BRCA1 gene. Forced expression of Egr-1 stimulated the BRCA1 promoter activity. EMSA data showed that Egr-1 bound directly to the EBS within the BRCA1 gene. Knockdown of Egr-1 through the expression of a small hairpin RNA (shRNA) attenuated etoposide-induced BRCA1 promoter activity. We conclude that Egr-1 targets the BRCA1 gene in HeLa cells exposed to etoposide.

LPS-Induced Modifications in Macrophage Transcript and Secretion Profiles Are Linked to Muscle Wasting and Glucose Intolerance

  • Heeyeon Ryu;Hyeon Hak Jeong;Seungjun Lee;Min-Kyeong Lee;Myeong-Jin Kim;Bonggi Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.270-279
    • /
    • 2024
  • Macrophages are versatile immune cells that play crucial roles in tissue repair, immune defense, and the regulation of immune responses. In the context of skeletal muscle, they are vital for maintaining muscle homeostasis but macrophage-induced chronic inflammation can lead to muscle dysfunction, resulting in skeletal muscle atrophy characterized by reduced muscle mass and impaired insulin regulation and glucose uptake. Although the involvement of macrophage-secreted factors in inflammation-induced muscle atrophy is well-established, the precise intracellular signaling pathways and secretion factors affecting skeletal muscle homeostasis require further investigation. This study aimed to explore the regulation of macrophage-secreted factors and their impact on muscle atrophy and glucose metabolism. By employing RNA sequencing (RNA-seq) and proteome array, we uncovered that factors secreted by lipopolysaccharide (LPS)-stimulated macrophages upregulated markers of muscle atrophy and pro-inflammatory cytokines, while concurrently reducing glucose uptake in muscle cells. The RNA-seq analysis identified alterations in gene expression patterns associated with immune system pathways and nutrient metabolism. The utilization of gene ontology (GO) analysis and proteome array with macrophage-conditioned media revealed the involvement of macrophage-secreted cytokines and chemokines associated with muscle atrophy. These findings offer valuable insights into the regulatory mechanisms of macrophage-secreted factors and their contributions to muscle-related diseases.

Anticancer Properties of Psidium guajava - a Mini-Review

  • Correa, Mariana Goncalves;Couto, Jessica Soldani;Teodoro, Anderson Junger
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4199-4204
    • /
    • 2016
  • Cancer is a complex disease caused by a progressive accumulation of multiple genetic mutations. Consumption of fruits is associated with lower risk of several cancers, which is mainly associated to their phytochemical content. The use of functional foods and chemopreventive compounds seems to contribute in this process, acting by mechanisms of antioxidant, anti-inflammatory, anti-angiogenic and hormonal. The Psidium Guajava has high potential functional related to pigments who are involved in the process of cancer prevention by having antioxidant activity. The aim of the present review is to expose some chemical compounds from P. Guajava fractions and their association with anti-carcinogenic function. The evidences supports the theory of anticancer properties of P. Guajava, although the mechanisms are still not fully elucidated, but may include scavenging free radicals, regulation of gene expression, modulation of cellular signalling pathways including those involved in DNA damage repair, cell proliferation and apoptosis.

A Case Study on the Conservation and Rehabilitation condition of Modern Architecture in Kyoto (역사적 건축물의 보존 및 활용에 관한 사례연구 -일본 교토시 근대건축을 중심으로-)

  • Kim, dong sik
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.8 no.3
    • /
    • pp.91-100
    • /
    • 2006
  • The purpose of this study is clear the characteristic of the condition of conservation and rehabilitation by investigates of Modern Architecture (Cultural Properties 51, common architecture 93, total 144) in Kyoto-city. In registration system for conservation of Modern Architecture of Kyoto city, regulation is stricter than statute of country and various assistances of repair and so on are adopting more active incentive policy. The condition of ownership of Cultural Properties is almost corporation or foundation and individual ownership is dwindling. Various portion conservation ways (annex facade elements replica) are appearing by technique assistance means to keep the original form. It is increase that the conditions of rehabilitation are to commerce equipment or open to the public as like an exhibition hall. In case of renovate to commerce equipment, tendency as cultural-composition equipment is increasing as like a local community.

  • PDF

Comparative Analysis of the Three Classes of Archaeal and Bacterial Ribonucleotide Reductase from Evolutionary Perspective

  • Pangare, Meenal G.;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.170-176
    • /
    • 2010
  • The Ribonucleotide reductases (RNR) are essential enzymes that catalyze the conversion of nucleotides to deoxynucleotides in DNA replication and repair in all living organisms. The RNRs operate by a free radical mechanism but differ in the composition of subunit, cofactor required and regulation by allostery. Based on these differences the RNRs are classified into three classesclass I, class II and class III which depend on oxygen, adenosylcobalamin and S-adenosylmethionine with an iron sulfur cluster respectively for radical generation. In this article thirty seven sequences belonging to each of the three classes of RNR were analyzed by using various tools of bioinformatics. Phylogenetic analysis, dot-plot comparisons and motif analysis was done to identify a number of differences in the three classes of RNRs. In this research article, we have attempted to decipher evolutionary relationship between the three classes of RNR by using bioinformatics approach.

Msi1-Like (MSIL) Proteins in Fungi

  • Yang, Dong-Hoon;Maeng, Shinae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Msi1-like (MSIL) proteins, which are eukaryote-specific and contain a series of WD40 repeats, have pleiotropic roles in chromatin assembly, DNA damage repair, and regulation of nutrient/stress-sensing signaling pathways. In the fungal kingdom, the functions of MSIL proteins have been studied most intensively in the budding yeast model Saccharomyces cerevisiae, an ascomycete. Yet their functions are largely unknown in other fungi. Recently, an MSIL protein, Msl1, was discovered and functionally characterized in the pathogenic yeast Cryptococcus neoformans, a basidiomycete. Interestingly, MSIL proteins appear to have redundant and unique roles in both fungi, suggesting that MSIL proteins may have evolutionarily divergent roles in different parts of the fungal kingdom. In this review, we will describe the current findings regarding the role of MSIL proteins in fungi and discuss future directions for research on this topic.