• Title/Summary/Keyword: Repair materials

Search Result 1,106, Processing Time 0.03 seconds

A Study on Guidelines for the Repair of Water-Leakage Cracks in Concrete Structures (콘크리트 구조물에 있어서 누수균열 보수를 위한 일반지침 제안 연구)

  • Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.97-107
    • /
    • 2010
  • This study outlines a successful and effective plan for repairing water-leakage cracks in concrete structures. The lack of adequate solutions for water-leakage cracks often results in unnecessarily high repair costs, and as such this remains a problem that requires constant attention. Unfortunately, despite the availability of a vast number of different materials and methods, it is often difficult to attain a perfect waterproof sealing The reason for the difficulties in the repair of water-leakage cracks can be attributed to an insufficient knowledge and understanding of the negative factors (i.e., chemical and physical (mechanical) conditions) that cause water-leakage cracks, and of the properties of the repair materials and methods. In this study, guidelines and methods for the selection of adequate materials for the repair of water-leakage cracks in concrete structures were developed for countries that do not already have general guidelines on this subject, and for local regulatory authorities elsewhere.

He Generation Evaluation on Electrodeposited Ni After Neutron Exposure (중성자 조사에 따른 Ni도금피복재에서의 He발생량평가)

  • Hwang, Seong Sik;Kwon, Junhyun;Kim, Dong Jin;Kim, Sung Woo
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.308-314
    • /
    • 2021
  • Neutron dose level at bottom head of a reactor pressure vessel (RPV) was calculated using reactor vessel neutron transport for a Korean nuclear power plant A. At 34 EFPY with a 40-year (2042) design life after plating repair, irradiation fast neutron effect was 6.6x1015 n/cm2. As helium(He) gas can be generated by Ni only at 1/106 level of 5 × 1021 n/cm2, He generation possibility in the Ni plating layer is very little during 40 years of operation (2042, 34 EFPY). Thermal neutrons can significantly affect the generation of He from Ni metal. At 10 years after a repair, He can be generated at a level of about 0.06 appm, a level that can add general welding repair without any consideration. After 40 years of repair, 9.8 appm of He may be generated. Although this is a rather high value, it is within the range of 0.1 to 10 appm when welding repair can be applied. Clad repair by Ni electroplating technology is expected to greatly improve the operation efficiency by improving the safety and shortening the maintenance period of the nuclear power plant.

A study on the Probabilistic Carbonation Progress for Existing RC Structure Apartment by Surface Finishing Materials (표면 마감재를 시공한 RC조 아파트의 확률론적 탄산화 평가 연구)

  • Lee, Hyung-Min;Min, Sang-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.7-8
    • /
    • 2017
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 5%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer Resin (폴리머계로 보수한 철근콘크리트 보의 휨성능 평가)

  • Kim, Byung-Guk;Shin, Young-Soo;Hong, Gi-Suop;Hong, Yung-Kyun;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.107-112
    • /
    • 1997
  • A series of reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. The key parameters for this study were the size and location of the patch, and the repair materials, including polymer, polymer-cementitious and cementitious materials. The repaired specimens failed by a typical flexural mode with minor interfacial bond failure. Beams repaired with polymer, polymer-cementitious and cementitious materials recover 100%, 91%, and 97% of the flexural strength respectively, while beams with cement mortar lose approximately 30% of the strength. Compared with the pressure injection techniques the specimens repaired with patching techniques show low flexural strength, with significant interfacial bond failure. Location and size of the repaired part do not affect the recovering performance. Interfacial behavior between repair and strengthening materials is the major influencing factor for the composite structures.

  • PDF

Experimental evaluation of fatigue strength for small diameter socket welded joints under vibration loading condition

  • Oh, Chang-Young;Lee, Jun-Ho;Kim, Dong-Woo;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3837-3851
    • /
    • 2021
  • To investigate how the fabrication and repair of socket welded joints could be used to enhance fatigue resistance under vibration condition, experimental test data of installation conditions that potentially influence fatigue strength were analyzed with the S-N curve. It was found that the decreasing fatigue strength of stainless steel socket welded joints was attributed to the effect of high heat input of welding process. The effect of welding method, slip-on gap and radial-gap conditions on fatigue strength was insignificant. The test data of repair technique application, 2 × 1 leg length and of socket weld overlay, clearly showed higher fatigue strength but there was a limitation for higher stress region because of the weld toe crack.

A Study on the Review of Repair Methods and Repair Materials for the Prevention of Fire spread of Building Exterior Materials (건축물 외장재의 화재확대방지를 위한 보수구법 및 보수재료 검토에 관한 연구)

  • Lee, Byeong-Heun;Jin, Seung-Hyeon;Park, Sung-Ha;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.105-111
    • /
    • 2019
  • In Korea, the results of a field survey on the construction of flammable exterior materials implemented in 2018 revealed that 147,559 buildings belong to this category. It was found that the fire spreading cases in upper and adjacent constructions are about 3,500 per year, the fires of starting in flammable exterior material are about 1,500 per year. In this study, we investigated the repair method of buildings constructed by flammable exterior material and conducted performance verification of each repair materials for prevention of similar fire. In the case of the repair method, a method of reinforcing with a repair material after removing the existing building finishing material and a method of attaching the repair material after performing the face finishing are proposed. In addition, we conducted cone calorimeter tests of 6 materials such as fireproof gypsum board, mineral wool, hard urethane foam, ceramic board and ALC panel as dryvit and repairing materials, and investigated basic combustion performance of that materials.

AN EVALUATION OF THE EFFECT OF CALCIUM SULFATE, AMALGAM AND CALCIUM HYDROXIDE IN THE REPAIR OF FURCATION PERFORATIONS (황산칼슘, 아말감 및 수산화칼슘이 치근분지부 천공부위에 미치는 치유효과에 관한 비교 연구)

  • Kang, Chung-Kyu;Roh, Byoung-Duck;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.93-109
    • /
    • 1997
  • Finding a right repair material for furcation perforation is one of the major issues in clinical endodontics. In this experiment, three materials, calcium sulfate, amalgam, and calcium hydroxide were tested for perforated furcation repair. Sixty premolars and molars of five dogs were used. A #4 round bur was used to create the perforation. All experimental teeth were divided into two repair-time groups. One was immediate-repair group, where the perforation was repaired immediately, the other was delayed-repair group, where the perforation was left open for four weeks and then repaired with the same manner as in the immediate-repiar group. All chamber openings were sealed with amalgam and then radiographed. The animals were sacrificed at eighth week following the repair procedure. Radiographic evaluation for furcal bone destruction was done. Histologic evaluation was ranked as 0,1,2,3 according to the inflammation degrees. New bone formation was also recorded. The following conclusions were drawn within the limits of the experimental results: 1. In immediate-repair group, no significant differences existed between the materials. 2. In delayed-repair group, calcium sulfate showed significantly less furcal bone destruction and lower inflammation degree than amalgam.(p<0.05) 3. Overextruded specimens showed more severe inflammation than unextruded specimens. 4. Most of the specimens showed certain degrees of inflammatory reaction and incomplete hard tissue healing. 5. In delayed-repair group, treated group showed less inflammation than untreated control group.

  • PDF

TENSILE BOND STRENGTH OF FOUR PORCELAIN REPAIR SYSTEMS (파절된 도재면에 대한 수종의 도재 수리 시스템의 인장결합강도)

  • Jeon Young-A;Yang Byung-Duk;Lee Ho-Jin;Park Ju-Mi;Song Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • Statement of problem. Dental ceramics exhibit excellent esthetic property, compressive strength, chemical durability biocompatibility and translucency. However, it suffers from inherent brittle fractures. Various techniques and materials for intraoral porcelain repair has been suggested. Purpose. This study is to compare the tensile bond strength of four commonly used porcelain repair systems (Vivadent, Bisco, Ulttadent, Voco) and to insure the best system for the clinical application to the fractured porcelain. Materials and methods. A total of fifty specimens were fabricated. Specimens were stored in $37^{\circ}C$ distilled water for 7 days and thermocycling was performed(1000 cycles), and subjected to a tensile force parallel to the repair resin and porcelain interface by use of an Universal Testing Machine. Result. 1. Voco showed the highest tensile bond strength. In decreasing order, the tensile bond strength of the other materials was as follows : Ultradent, Bisco, Vivadent. 2. There was a statistically significant difference between the porcelain repair systems(Voco, Ultradent > Bisco, Yivadent) (p<0.05). 3. SEM examination of prepared porcelain surfaces revealed that the surface treated with Voco showed brittle fracture. However, Ultradent, Bisco and Vivadent showed ductile fracture. 4. All specimens treated with four porcelain repair systems showed adhesive failure between porcelain and composite resin.

Performance Evaluation of Various Concrete Repair Materials to Corrosion Prevent of Rebar (철근의 부식 방지를 위한 다양한 콘크리트 보수재료들의 성능평가)

  • Tae-Kyun Kim;Jong-Sub Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.458-466
    • /
    • 2023
  • Structures in our surroundings deteriorate over time due to environmental and chemical factors, resulting in a decrease in their performance. The primary causes of degradation in concrete structures are carbonation, salt damage, and freeze-thaw cycles. Various maintenance methods exist to address these degradation issues. However, research and technological development for existing maintenance methods have been ongoing, but the accuracy and effectiveness of repair materials and techniques have not been extensively validated. Therefore, in this study, we conducted a material performance evaluation of various manufacturers' repair materials. Based on this evaluation, we applied corrosion inhibitors and epoxy, which are the methods most closely related to crack repair, to assess the durability performance against carbonation, salt damage, and freeze-thaw cycles. The results show approximately a two-fold performance improvement against carbonation and salt damage, and a 5% enhancement in repair performance against freeze-thaw cycles. Thus, it is considered effective in preventing rebar corrosion when appropriate maintenance is carried out according to environmental and chemical factors during structural repairs.

A Study on Standard Repair Periods, Repair Rates of School Facilities for Revitalizing of the School BTL Project (학교 BTL사업의 활성화를 위한 학교시설의 수선주기와 수선율 및 내용연수 산정에 관한 연구 -서울시내 초·중·고등학교를 중심으로-)

  • Ha, Ho-Sung
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.6 no.1
    • /
    • pp.60-84
    • /
    • 2007
  • This study purpose is seeing that the independent standard sufficiently reflecting the characteristics of the school facility as the basic material needed to calculate the maintenance and repair expenses is needed to make a more realistic and valid qualitative VFM analysis of the school BTL project. this study attempted to develop the standard for the repair cycle and rate and economic year of the school facility. The quantitative VFM analysis should be conducted based on the repair cycle and repair rate proper to the school facility, not the residential space, when calculating the maintenance and repair expenses of the operating expenses of the school facility. An attempt was made to calculate the repair cycle, repair rate and economic life of 114 component materials of the school facility judged to be able to explain the school field best. And it was confirmed that the repair and maintenance expenses more is needed to be set by about 35% than the existing maintenance and repair expenses.

  • PDF