• Title/Summary/Keyword: Repair Materials

Search Result 1,106, Processing Time 0.025 seconds

Conceptual Design for a Diagnosis System of Vehicle Performance using the Satellite Telemetry Technology (위성 원격측정기술을 이용한 차량 성능진단시스템 개념 설계)

  • Eun, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4576-4582
    • /
    • 2010
  • Because most of vehicle provide users with the very limited information regarding the performance of vehicle, it is quite difficult for users to drive vehicles safe, and to maintain and repair vehicles properly. In order to solve the above-mentioned problems, several ways of research and development for the vehicle control and diagnosis system have been recently carried out. However, a lot of complicated problems and difficulties were arising due to the complexity of the developed system, degradation of the reliability for the vehicle performance control system, operational malfunction and so on. In this paper, for the purpose of solving the difficult problems and technical limitations, a system for vehicle performance which might be able to diagnose the reliability of vehicle performance by measuring and analyzing the real time performance of vehicle using the satellite telemetry technology was conmance oly defined and deehiced.hihe results derived from the cormance ofdvehiclactivities in this study shall be used as not only fundamental data but also materials for the detailed design for the implementation of vehicle performance diagnosis system in the near future.

An Experimental Study on the Physical Property of Lime Mortar in the Building' Masonry (조적조 건축물의 석회 모르타르 특성에 관한 실험적 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.133-141
    • /
    • 2009
  • 50 year-old masonry buildings which had been constructed using lime mortar have caused lots of problems because of using different material, cement mortar, when they repair them. Also, there is little information on structural capacities and details of masonry buildings built using lime mortar. In addition, it is difficult to evaluate the structural capacities of the buildings which were often constructed by untrained labors. To preserve the original masonry construction, the study on their construction materials and methodologies has to be carried out. This paper provides basic information for establishing standard details of masonry works using lime mortar in order to overcome these problems when cultural properties are repaired or retrofitted. To do this, compression tests of lime mortar were preformed with the parameters of mixing ratios, mixing material, curing time and curing conditions etc. Based on the test results, the differences between lime mortar and cement mortar were specified and the structural characteristics of lime mortar were also presented in this paper.

The Effect of Palmultang(八物湯) on the Ovarian Functions and Differential Gene Expression of Caspase-3, MAPK and MPG in Female Mice (팔물탕(八物湯)이 자성생쥐의 생식능력과 Caspase-3, MAPK 및 MPG 유전자 발현에 미치는 영향)

  • Joo, Jin-Man;Baek, Seung-Hee;Kim, Eun-Ha;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.3
    • /
    • pp.91-110
    • /
    • 2007
  • Purpose : These experiments were undertaken to evaluate the effect of administration of Palmultang on ovarian functions and differential gene expressions related cell viabilities caspase-3, MAPK and MPG in female mice. Materials and Methods : We administered the Palmultang to 6-week-old female ICR mice for 4, 8, or 12 days. The female mice were injected PMSG and hCG for ovarian hyperstimulation. And then recovered ovaries were minced and extracted mRNA and analyzed cell viability related gene expression. We chose the caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair. To compare the differences, we set a control group treated with plain water at the same volume by the same way. Results : In case of administration of Palmultang, the mean number of total ovulated oocytes and the number of morphologically normal oocytes increased significantly compared to a control group. We were also examined the embryonic developmental competence in vitro. The administration of Palmultang in a concentration with 10 and 100 mg/ml were beneficial effect of embryonic development in preimplantation period. The administration of Palmultang play a role of prevention of cell apoptosis and DNA damages and also increased cell proliferation resulted in ovarian functions. Conclusion : From our results suggested that the medication of Palmultang has beneficial effect on reproductive functions of female mice via prevention of cell apoptosis and DNA damaging and promotion of cell proliferation.

  • PDF

Three-dimensional intraoperative computed tomography imaging for zygomatic fracture repair

  • Peleg, Oren;Ianculovici, Clariel;Shuster, Amir;Mijiritsky, Eitan;Oz, Itay;Kleinman, Shlomi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.5
    • /
    • pp.382-387
    • /
    • 2021
  • Objectives: Zygomatic complex (ZMC) fractures comprise up to 40% of all facial fractures. Misaligned bone fragments and misplaced fixation hardware traditionally detected postoperatively on plain radiographs of the skull might require re-operation. The intraoperative O-Arm (Medtronic, USA) is a three-dimensional (3D) computed tomographic imaging system. Materials and Methods: This retrospective single-center study evaluated the utility of O-Arm scanning during corrective surgeries for ZMC and zygomatic arch (ZA) fractures from 2018 to 2020. Three females and 16 males (mean age, 31.52 years; range, 22-48 years) were included. Fracture instability (n=6) and facial deformity (n=15) were the most frequent indications for intraoperative 3D O-Arm scan. Results: The images demonstrated that all fracture lines were properly reduced and fixed. Another scan performed at the end of the fixation or reduction stage, however, revealed suboptimal results in five of the 19 cases, and further reduction and fixation of the fracture lines were required. Conclusion: Implementation of an intraoperative O-Arm system in ZMC and ZA fracture surgeries assists in obtaining predictable and accurate results and obviates the need for revision surgeries. The device should be considered for precise operations such as ZMC fracture repairs.

Strengthening of concrete damaged by mechanical loading and elevated temperature

  • Ahmad, Hammad;Hameed, Rashid;Riaz, Muhammad Rizwan;Gillani, Asad Ali
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.645-658
    • /
    • 2018
  • Despite being one of the most abundantly used construction materials because of its exceptional properties, concrete is susceptible to deterioration and damage due to various factors particularly corrosion, improper loading, poor workmanship and design discrepancies, and as a result concrete structures require retrofitting and strengthening. In recent times, Fiber Reinforced Polymer (FRP) composites have substituted the conventional techniques of retrofitting and strengthening of damaged concrete. Most of the research studies related to concrete strengthening using FRP have been performed on undamaged test specimens. This contribution presents the results of an experimental study in which concrete specimens were damaged by mechanical loading and elevated temperature in laboratory prior to application of Carbon Fiber Reinforced Polymer (CFRP) sheets for strengthening. The test specimens prepared using concrete of target compressive strength of 28 MPa at 28 days were subjected to compressive and splitting tensile testing up to failure and the intact pieces of the failed specimens were collected for the purpose of repair. In order to induce damage as a result of elevated temperature, the concrete cylinders were subjected to $400^{\circ}C$ and $800^{\circ}C$ temperature for two hours duration. Concrete cylinders damaged under compressive and split tensile loads were re-cast using concrete and rich cement-sand mortar, respectively and then strengthened using CFRP wrap. Concrete cylinders damaged due to elevated temperature were also strengthened using CFRP wrap. Re-cast and strengthened concrete cylinders were tested in compression and splitting tension. The obtained results revealed that re-casting of specimens damaged by mechanical loadings using concrete & mortar, and then strengthened by single layer CFRP wrap exhibited strength even higher than their original values. In case of specimens damaged by elevated temperature, the results indicated that concrete strength is significantly dropped and strengthening using CFRP wrap made it possible to not only recover the lost strength but also resulted in concrete strength greater than the original value.

Material Properties of Fast hardening Polymer Mortar by Fine Aggregate Types and Replacement Ratio (잔골재 종류 및 치환율에 의한 속경성 폴리머 모르타르의 재료 특성)

  • Shin, Seung-Bong;Kim, Gyu-Yong;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.145-151
    • /
    • 2019
  • The Physical performance of use materials was evaluated to improve durability of fast-paced repair mortar used at rapid construction sites. The fastening performance and basic performance were evaluated by substituting ferronickel grinding slag residues, rapid settlement, and EVA-based polymer for mortar. As a result, the compressive strength, flexural strength and adhesion strength were increased due to the use of FS Fine Aggregate and RS Fine Aggregate. The chloride ion promotion test of fast-polymer mortar kept the chloride inhibitory performance from 7 days to 28 days when fNS was used less than 50%. Durability degradation due to the use of FS Fine Aggregate and RS Fine Aggregate has not been found, and it is believed that further consideration of economic and long-term durability will be required for use as alternative Aggregate for construction and civil engineering.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Carbonation Reaction and Strength Development of Air Lime Mortar with Superplasticizer (고성능 감수제가 혼입된 기경성 석회 모르타르의 탄산화 반응 및 강도발현 특성)

  • Kang, Sung-Hoon;Hwang, Jong-Kook;Kwon, Yang-Hee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.179-186
    • /
    • 2019
  • Air lime is a traditional building material of Korea. It had been used in roofs, walls, floors and masonry joints of traditional buildings until the advent of Portland cement. However, due to its low strength and durability, the lime is currently avoided as a repair or restoration material for the preservation of architectural heritage. Furthermore, due to the current practice of using hydraulic materials such as Portland cement, understanding of the material characteristics of air lime is very poor in practice. In this context, this study intended to improve the mechanical properties of the air lime mortar by reducing water contents, and also the carbonation reaction of the mortar was quantitatively evaluated to clearly understand the characteristics of this material. Accordingly, air lime mortar with a water-to-binder ratio of 0.4 was manufactured using polycarboxylate-type superplasticizer. During the 7 days of sealed curing period, the mortar did not harden at all. In other words, there was no reaction required for hardening since it could not absorb carbon dioxide from the atmosphere. However, once exposed to the air, the compressive strength of the mortar began to rapidly increase due to the carbonation reaction, and the strength increased steadily until the 28th day; after then, the strength development was significantly slowed down. On the 28th day, the mortar exhibit a compressive strength of about 5 MPa, which is equivalent to the European standard regarding strength of hydraulic lime used for preservation of architectural heritage.

Implementation of a Blockchain-based Talent Trading Platform to Reduce Transaction Costs (거래 비용 절감을 위한 블록체인 기반 재능거래 플랫폼)

  • Yang, Seonghun;Jin, Hoe-Yong;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.922-934
    • /
    • 2020
  • The talent trading platform is a platform that brokers transactions such as program coding, media content production (video, music, presentation materials, etc.), design, learning, and repair. Existing talent trading platforms provide a server-client model-based service, which incurs server operating costs and arbitration labor costs for transactions, which has a disadvantage that users bear high service fees. This paper proposes a method to reduce server and database operation costs by uploading transaction information to blocks through the system as a distributed app (dApp) based on the Ethereum platform. In addition, it proposes a method to lower transaction fees by reducing the labor cost of transaction arbitrators through smart contracts. Compare and analyze the cost processing procedure and transaction fee size of the blockchain-based talent trading platform and the existing talent trading platform.

Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers (Inconel 625 열용사 코팅 층의 고상입자 침식 거동)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • In this study, to repair damaged economizer fin tubes on ships, sealing treatment was performed after applying arc thermal spray coating technology using Inconel 625. A solid particle erosion (SPE) experiment was conducted according to ASTM G76-05 to evaluate the durability of the substrate, thermal spray coating (TSC), and thermal spray coating+sealing treatment (TSC+Sealing) specimens. The surface damage shape was observed using a scanning electron microscope and 3D laser microscope, and the durability was evaluated through the weight loss and surface roughness analysis. Consequently, the durability of the substrate was superior to that of TSC and TSC+Sealing, which was believed to be owing to numerous pore defects in the TSC layer. In addition, the mechanism of solid particle erosion damage was accompanied by plastic deformation and fatigue, which were the characteristics of ductile materials in the case of the substrate, and the tendency of brittle fracture in the case of TSC and TSC+Sealing was confirmed.