• Title/Summary/Keyword: Renewable resources

Search Result 754, Processing Time 0.036 seconds

Analysis of Wind Energy Potential on the West Coast of South Korea Using Public Data from the Korea Meteorological Administration (기상청 공공데이터를 활용한 대한민국 서해안 일대의 바람자원 분석)

  • Sangkyun Kang;Sung-Ho Yu;Sina Hadadi;Dae-Won Seo;Jungkeun Oh;Jang-Ho Lee
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.14-24
    • /
    • 2023
  • The significance of renewable energy has been on the rise, as evidenced by the 3020 renewable energy plan and the 2050 carbon neutrality strategy, which seek to advance a low-carbon economy by implementing a power supply strategy centered around renewable energy sources. This study examines the wind resources on the west coast of South Korea and confirms the potential for wind power generation in the area. Wind speed data was collected from 22 automatic weather system stations and four light house automatic weather system stations provided by the Korea Meteorological Administration to evaluate potential sites for wind farms. Weibull distribution was used to analyze the wind data and calculate wind power density. Annual energy production and capacity factors were estimated for 15-20 MW-class large wind turbines through the height correction of observed wind speeds. These findings offer valuable information for selecting wind power generation sites, predicting economic feasibility, and determining optimal equipment capacity for future wind power generation sites in the region.

Life cycle analysis on correlation relationship between GHG emission and cost of electricity generation system for energy resources (전과정을 고려한 에너지 자원별 전력생산의 온실가스 배출량과 비용의 상관관계 분석)

  • Kim, Heetae;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.136.2-136.2
    • /
    • 2011
  • In this work, we analyzed correlations between life-cycle greenhouse gas (GHG) emissions and life-cycle cost of energy resources. Energy resources studied in this paper include coal, natural gas, nuclear power, hydropower, geothermal energy, wind power, solar thermal energy, and solar photovoltaic energy, and all of them are used to generate electricity. We calculated the mean values, ranges of maximum minus minimum values, and ranges of 90% confidence interval of life-cycle GHG emissions and life-cycle cost of each energy resource. Based on the values, we plotted them in two dimensional graphs to analyze a relationship and characteristics between GHG emissions and cost. Besides, to analyze the technical maturity, the GHG emissions and the range of minimum and maximum values were compared to each other. For the electric generation, energy resources are largely inverse proportional to the GHG emission and the corresponding cost.

  • PDF

Investigation on the Wave Power Resources on the East Coast of Korea Based on Field Measurement Data (실측자료에 근거한 동해안 파력 부존량 검토)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Lee, Dal-Soo;Lee, Dong-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.630-634
    • /
    • 2007
  • In the past, the use of wave energy has mainly been focused on conversion of large wave energy resources in the far offshore areas. However, with the technological improvement of converting wave energy into electricity, the energy resources at much shallow waters are now considered as a site for possible installation of the devices that obtain energy from the waves. In this respect, the wave energy resources on the east coast of Korea, where the sea is milder than the open ocean, were investigated using the field measurement data obtained at three different locations along the coast. For all the locations, the wave power was greater in winter season, compared to summer season. The estimated wave power varied from 2 to 4.5 kW/m on average, depending on the measurement locations.

  • PDF

Development of Aquaculture for Conservation of Resources and Environment in Korea (지속적 어업을 위한 자원 $\cdot$ 환경보전적 양식어업의 전개 방향)

  • Shin Yong-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.36 no.1 s.67
    • /
    • pp.27-49
    • /
    • 2005
  • This paper represents a critical review of current the relationship between aquaculture and the environment, focusing on the development of marine aquaculture for conservation of resources and environment in Korea. Aquaculture has grown rapidly during the past few decades in Korea. This expansion was possibly because of the growing demand for aquatic products and the failure of the capture fishery to keep pace with the demand. Nevertheless, the aquaculture industry must counter criticisms about adverse environmental effects and lack of sustainability. The productivity of Korean aquaculture is decreasing by environmental pollution, is suffering difficulty because competitive power of the aquaculture industry is weak, external effects of aquiculture is giving negative effects to coastal fishery. Therefore, aquaculture must improve as environmentally sound aquaculture for fisheries sustainability, and intensive aquaculture of high density must convert by low input sustainable aquaculture. Finally, the aquaculture system of Korea has to change to aquaculture for conservation of non - renewable resources and environment, it may contribute to development of Korean fisheries.

  • PDF

Fiber optic distribution temperature sensing in a borehole heat exchanger system (광섬유 센서를 이용한 지중 열교환기 시스템 온도 모니터링)

  • Shim, Byoung-Ohan;Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.451-454
    • /
    • 2006
  • Fiber optic distributed temperature sensing and thermal line sensor are applied in an observation borehole and a loom deep borehole heat exchanger. For the case of permanently installed system fiber optic DTS is very useful. By comparing with TLS, fiber optic DTS shows good accuracy and reliability. Ground water flow can give influences at heat exchange rate of the heat pump system. According to the hydraulic characteristics and temperature-depth profile, we consider that temperature-depth profile do not seem to be dependent on ground water flow. A permanent installation of fiber optic cable is expected as a reliable temperature measurement technique in a borehole heat exchanger system.

  • PDF

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

A Proposal of USN-based DER(Decentralized Energy Resources) Management Algorithm (USN 기반의 댁내 분산 전력 관리 알고리즘 제안)

  • Cho, Young-Rok;Jang, Min-Seok;Lee, Yon-Sik;Bae, Seok-Chan;Kim, Weon-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.824-827
    • /
    • 2011
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management algorithm on basis of real time monitoring for meteorological data. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

A Proposal of USN-based DER(Decentralized Energy Resources) Management System (USN 기반의 댁내 분산 전력 관리 시스템 제안)

  • Kim, Bo-Min;Kim, Jeong-Young;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.871-874
    • /
    • 2010
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management method on basis of real time monitoring for meteorological data. In the current situation of lacking in USN-based killer application in Smart Grid field, this paper proposes the USN-based DER management system which collects the meteorological data and control power system througout utilizing wireless sensor network technique this business. This communication technique is regarded to be efficient in aspects of installation cost and tits maintenance cost. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

An Analysis of Time Varying Beta Risk in Domestic Renewable Energy Company (국내 신재생에너지 기업의 리스크 분석)

  • Lee, UiJae;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.22 no.1
    • /
    • pp.99-125
    • /
    • 2013
  • Renewable energy industry not only has a promising future but also has more risk than conventional energy industry because of its characteristics. Therefore, in this study, an analysis of domestic renewable energy company risk has been performed. The risk of domestic wind and photovoltaic energy companies has been analyzed by using time varying beta model. The model has been constructed based on risk factors like firm size, firm diversification index, domestic installation, and so on. The principal result of analysis can be summarized as follows. First, risk factors affect domestic renewable energy companies have been discovered. Variables like firm size, growth rate of debt ratio, firm diversification index are statistically significant. I found that large firms are less riskier than small firms. It is also confirmed that companies with high diversification index and high debt ratio have high risk. Second, I got the result that policy factors like domestic renewable energy installation and government R&D expenditure could decrease risk of domestic renewable energy company. Third, relative sensitivity of each risk factor have been discovered. The effect of each variable gets bigger in this order: growth rate of domestic installation, firm size or diversification index, growth rate of debt ratio, growth rate of government R&D expenditure.

Optimization of Cement Manufacturing Process for Heat Source Application of Automobile Shredder Residue (자동차 폐차잔재(ASR)의 시멘트제조 열원활용공정의 최적화)

  • Oh, Sea-Cheon;Kwon, Woo-Teck;Kim, Soo-Ryong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • Rotary kiln in cement work has been evaluated for a wide variety of organic wastes such as wood, used tyres, plastic wastes and automobile shredder residue (ASR). However the presence of chlorine hampers the use of ASR as fuel in rotary kiln. Therefore, the behavior characteristics of chlorine components in rotary kiln should be considered to develop an effective method for ASR treatment to recovery energy resources. The aim of this paper is to present the chlorine control system applied to a cement manufacturing process for ASR use as an alternative fuel. In this work, the simulation of bypass unit and cyclones for chlorine control in rotary kiln has been studied and compared with the operation results of field test.

  • PDF