• Title/Summary/Keyword: Renewable resource

Search Result 449, Processing Time 0.025 seconds

Economic Damage Assessment of Coastal Development using Dynamic Bioeconomic Model

  • Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.741-751
    • /
    • 2012
  • This article analyzes the interdependency between nonrenewable marine sand resources and renewable fishery resources by the developed dynamic bioeconomic model. The developed bioeconomic model is applied to a case study of efficient sustainable management for marine sand mining, which adversely affects a valuable blue crab fishery and its habitat in Korea. The socially-efficient extraction plan for marine sand and the time-variant environmental external costs to society in terms of diminished harvest rate of blue crab are determined. To take into account long-term effects from destroyed fishery habitat, a Beverton-Holt age structure model is integrated into the bioeconomic model. The illustrative results reveal that the efficient sand extraction plan is dynamically constrained by the stock size of the blue crab fishery over time. Thus, the dynamic environmental external cost is more realistic resource policy option than the classical fixed external cost for determining socially optimal extraction plans. Additionally, the economic value of bottom habitat, which supports the on- and off-site commercial blue crab fishery is estimated. The empirical results are interpreted with emphasis on guidelines for management policy for marine sand mining.

Microgrid Island Operation Based on Power Conditioning System with Distributed Energy Resources for Smart Grid (스마트 그리드를 위한 분산자원과 전력변환장치 기반 마이크로그리드 독립운전)

  • Heo, Sewan;Park, Wan-Ki;Lee, Ilwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1093-1101
    • /
    • 2017
  • Microgrid as a unit component consisting a smart grid is an isolated system, which has a decentralized power supply system. This paper proposes an electrical isolation of the microgrid from the utiliy grid based on a power conditioning system, and also proposes an operation method maintaining the isolated state efficiently using diverse distributed energy resources such as renewable energy sources and energy storage system. The proposed system minimizes the influence of the grid connection on the internal load though a phase detection and synchrnoization to the utiligy grid and the microgrid can be stable even if the grid is failed.

Power Control of Synchronous Machine Type Wind Power System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 동기기형 풍력 발전 시스템의 출력제어)

  • Han, Sang-Geun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.201-203
    • /
    • 2002
  • In recent years there has been a growing interest in renewable energy systems due to the environmental problem and the economic benefits of fuel savings. Such systems are usually connected to the existing power grid for "fuel displacement" purpose as well as of earning some "capacity credit". Wind power generation system(WPGS) is one of the most useful energy resource using natural environment. So far, it was very difficult to simulate the dispersed generation system including WPGS using EMTP or EMTDC because the source of the dispersed generation system has a particular wind power characteristic equation. In this paper, a novel simulation method of WPGS has proposed and a new wind turbine component for EMTDC is also developed. The wind power characteristic equation of wind turbine is used in order to realize the WPGS in EMTDC simulation. And the real field data of weather conditions is interfaced to EMTDC using Fortran program interface method. Consequently the simulation of WPGS using field data is realized in this paper and shows acceptable results.

  • PDF

The study on kinetic value for simulation in fluidized catalytic gasification (유동층에서의 촉매 석탄가스화 공정 모델 모사를 위한 kinetics에 대한 연구)

  • Jang, Dong-Ha;Jeon, Young-Shin;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74.1-74.1
    • /
    • 2011
  • As a demand for energy, many studies are increasing about energy resource. One of these resources is coal which reserves of underground. A lot of research to use coal is going on as method of IGCC (Integrated Gasification Combined Cycle). In addition, SNG(Substitute Natural Gas) and IGFC (Integrated Gasification Fuel Cell) are also being developed for fuel & electricity. This technology which uses synthesis gas after gasification is to produce electricity from the Fuel Cell. At this point, important thing is the components of synthesis gas. The main objective is to increase the proportion of methane and hydrogen in synthesis gas. The catalytic gasification is suitable to enhance the composition of methane and hydrogen. In this study, Exxon Predevelopment catalyst gasification study was served as a good reference and then catalytic gasification simulation process is conducting using Aspen Plus in this research. For this modelling, kinetic value should be calculated from Exxon's report which is used for modeling catalytic gasification. Catalytic gasification model was performed by following above method and was analyzed by thermodynamic method through simulation results.

  • PDF

A Simulator for a Performance Test of HEVs (하이브리드 자동차 성능 시뮬레이터)

  • Zheng, Chun-Hua;Kim, Nam-Wook;Lee, Dae-Heung;Lim, Won-Sik;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.353-356
    • /
    • 2008
  • HEV(Hybrid Electrical Vehicle) is considered as one of the next generation vehicles. To develop the HEV, there must be a reliable simulator, by which the capacities of the power resources are tested, and the parameters of the HEV are optimized before developing the real model of the HEVs. This process can save the money for designing the HEV system and improve the system without experiments. Matlab Simulink is familiar to mechanical engineers and the program can simultaneously provide a system model and a controller in one program. Nowadays, the Simdriveline toolbox which is used for analysis a power-train system is applied to build a dynamic model for a HEV system. In this study, we make a HEV simulator with the Simdriveline toolbox and develop a controller. There are two simple strategies, applied to the controller. One strategy includes a power split ratio and a shift map which are created by user. Other strategy calculated an appropriate amount of resource's torque along specific results, and this is useful when users can't develop a fitting controller. The methodologies for configuring the simulator and its control system are presented in this paper.

  • PDF

Study on Noise and Low Frequency Noise generated by Wind Power plant(Wind Farm) (풍력발전시설에서 발생하는 환경소음 및 저주파음에 관한 연구)

  • Park, Young-Min;Choung, Tae-Ryang;Son, Jin Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.425-434
    • /
    • 2011
  • The energy produced by wind power generation is a clean energy product because it is acquired by using renewable resource. Wind power plants("wind farms), in Korea, have been built and operated as 345.6MW facilities from 2001 until now 2009. Nevertheless, environmental issues regarding construction of wind power plants have arisen. accordingly it is time to consider the environmental and social issues of wind power in accordance with the government's policy objectives of increased wind power production. In this study, we investigated the influence that noise and low frequency noise caused by Wind power plants have on neighborhood and residents. We also sought solutions to these issues. In order to analyze the issues of wind power facilities, we compared and examined precedents and the solutions for noise and low frequency noise in Europe, the United states and Japan. We intended to examine the influences of wind power facilities and propose alternative in dealing with these issues.

Trend of Photo-Electrochemical Hydrogen Production Technology (광전기화학적 수소제조 기술 동향분석)

  • Han, Hye-Jung;Kang, Kyung-Seok;Baeg, Jin-Ook;Moon, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.741-748
    • /
    • 2011
  • Hydrogen is clean and renewable, and recognized as a very promising energy resource to solve both depletion of petroleum and environmental problems caused by the use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, the technology trend of photo-electrochemical (PEC) hydrogen production was scrutinized based on the patent and paper analysis. Open/registered patents of US, JP, EP, and KR and SCI Journals related to the PEC hydrogen production technology between 1996~2010 were reviewed. Patents and papers were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend was discussed by classifying each patent and paper based on the publishing year, country, and organization, and analyzing the core patents and papers.

A Study on the Maintenance Plan Considering Maintenance Cycle of Wind Turbine Component (각 컴포넌트 유지보수 주기를 고려한 풍력발전 설비의 유지보수 계획에 관한 연구)

  • Lee, Yun-Seong;Shin, Jun-Hyun;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.39-45
    • /
    • 2013
  • Wind power is one of the fastest growing renewable energy sources. In these days, wind turbine shifts from onshore to offshore because the offshore wind farm has a abundant wind resource. However, offshore wind turbine is not easy to access, it has a long downtime when the failures of the wind turbine component occur. Therefore, the appropriate wind turbine maintenance plan is required to meet the economic and reliability of the components. This paper proposes the maintenance planning method based on the RCM(Reliability Centered Maintenance) to determine an economical maintenance cycle to satisfy the appropriate reliability of the wind turbine components. In order to compare the proposed method with the conventional RCM method, critical components are selected in the case study because they have a long downtime and a large amount of total cost.

Hydrogen Production Technology (수소생산기술현황)

  • Joo, Oh-Shim
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.688-696
    • /
    • 2011
  • Hydrogen is one of the few long-term sustainable clean energy carriers, emitting only water as by-products during its combustion or oxidation. The use of fossil fuels to produce hydrogen makes large amount of carbon dioxide (>7 kg $CO_{2}$/kg $H_{2}$) during the reforming processes. Hydrogen production can be environmentally benign only if the energy and the resource to make hydrogen is sustainable and renewable. Biomass is an attractive alternative to fossil fuels for carbon dioxide because of the hydrogen can be produced by conversion of the biomass and the carbon dioxide formed during hydrogen production is consumed by biomass generation process. Hydrogen production using solar energy also attracts great attention because of the potential to use abundance natural energy and water.

Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

  • Suriani, M.J.;Nik, W.B. Wan
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-89
    • /
    • 2017
  • One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.