• Title/Summary/Keyword: Renewable energy system

Search Result 2,437, Processing Time 0.033 seconds

A Comparative Study on Evaluation Methods of Energy of Green Building Certification Criteria 2010 and LEED 2009 (국내 친환경건축물인증제도2010과 LEED2009에서의 에너지평가방법에 대한 비교 연구)

  • Hyun, Eun Mi;Kim, Yong Sik
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.39-47
    • /
    • 2012
  • Recently, the green building and energy connection system are establishing. But, National certification system for environment-Friendly Buildings is indicated hangup about energy efficiency of building. Commissioning, energy conservation, renewable energy, carbon dioxide emissions, it is determined that the energy associated with LEED and GBCC four items of the comparative analysis showed the following results. First, on the practical performance of the system after the completion of commissioning of the energy associated with the system completed until after the final performance for secure operation from the planning stage to verify and document systematically how to perform, but the domestic review and verification is incomplete. Second, the use of energy-saving and renewable energy is directly related to the energy consumption of the building, but GBCC the strengthening of standards on how to evaluate it is deemed necessary. Finally, the evaluation of the reduction of carbon dioxide emissions, LEED Unlike GBCC the life-cycle of the system without considering the global warming index only because a substantial step in the operating efficiency can not be assessed. Based on this study GBCC energy savings through efficiency to actively carry out research through a systematic analysis of the basic guidelines to proceed.

Design and Control of Novel Topology for Photovoltaic DC/DC Converter with High Efficiency under Wide Load Ranges

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.300-307
    • /
    • 2009
  • In this paper, design and control is proposed for a four input-series-output-series-connected ZVS full bridge converter for the photovoltaic power conditioning system (PCS). The novel topology for a photovoltaic (PV) DC/DC converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing PV module characteristics is proposed. The control scheme, including an input voltage controller is proposed to achieve equal sharing of the input voltage as well output voltages by a four series connected module. Design methods for ZVS power stage are also introduced. The total PV system is implemented for a 250-kW PV power conditioning system (PCS). This system has only three DC/DC converters with a 25-kW power rating and uses only one-third of the total PV PCS power. The 25-kW prototype PV DC/DC converter is introduced to verify experimentally the proposed topology. In addition, an experimental result shows that the proposed topology exhibits good performance.

Analysis of Shadows Effect in Seoul Area for the Estimation of Roof-type PV Power Calculation (지붕형 태양광 발전량 산정을 위한 서울지역 그림자 효과 분석)

  • Yun, ChangYeol;Jung, BoRin;Kim, ShinYoung;Kim, ChangKi;Kim, JinYoung;Kim, HyunGoo;Kang, YongHeack;Kim, YongIl
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • For the preliminary step for estimating the performance of roof-type photovoltaic system in urban areas, we analyzed the solar radiation reduction ratio by shadow effect by buildings using DSM (Digital Surface Model) and GIS (Geographical Information System) tools. An average loss by the shadow is about 19% in Seoul. The result was related to the building density and distribution. Monthly results show that the winter season (December and January) was more affected by the shading than during the summer season (June and July). It is expected that useful empirical formulas can be made if more detailed correlation studies are performed.

Energy Performance Assessment Study of Prismatic Solar Hybrid Collector System (Prismatic Solar Hybrid Collector 시스템의 에너지 성능 평가에 관한 연구)

  • Park, J.U.;Kim, K.S.;Lee, E.J.;Chung, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2003
  • PSHC(Prismatic Solar Hybrid Collector) is a passive solar system composed of prismatic acrly glazing, glazing and ventilating fan. This PSHC system is applied to effectively reduce heating ventilation load as well as lighting load. But so far no method appraising thermal performance of this PSHC system has been developed yet. To assess thermal performance of the PSHC system, a prototype PSHC experimental facility and TRNSYS subroutine type-205 model have been developed in Korea Institute of Energy Research (KIER). The results indicated that l)TRNSYS empirical model of PSHC has been properly modeled with actual performance data, 2)a more reliable source of weather data such as NASA and KIER weather station have been also obtained, and therefore, 3)the annual energy performance of PSHC could be assessed based on this proposed TRNSYS model.

ICT-based Integrated Renewable Energy Monitoring System for Agricultural Products (ICT 기반 농작물 대상 재생에너지 통합 모니터링 시스템 개발)

  • Kim, Yu-Bin;Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.593-602
    • /
    • 2020
  • Recently, as research on smart farms has been actively conducted, systems for efficiently cultivating crops have been introduced and various energy systems using renewable energy such as solar, geothermal and wind power generation have been proposed to save the energy. In this paper, we propose a new and renewable energy convergence system for crops that provides energy independence and improved crop cultivation environment. First, we present LPWA-based communication node and gateway for ICT-based data collection. Then we propose an integrated monitoring server that collects energy data, crop growth data, and environmental data through a communication node and builds it as big data to perform optimal energy management that reflects the characteristics of the environment for cultivating crops. The proposed system is expected to contribute to the production of low-cost, high-quality crops through the fusion of renewable energy and smart farms.

Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources (재생에너지 기반 그린 수소 생산 시스템의 기술 경제성 분석)

  • PARK, JOUNGHO;KIM, CHANG-HEE;CHO, HYUN-SEOK;KIM, SANG-KYUNG;CHO, WON-CHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Worldwide, there is a significant surge in the efforts for addressing the issue of global warming; the use of renewable energy is one of the solutions proposed to mitigate global warming. However, severe volatility is a critical disadvantage, and thus, power-to-gas technology is considered one of best solutions for energy storage. Hydrogen is a popular candidate from the perspective of both environment and economics. Accordingly, a hydrogen production system based on renewable energy sources is developed, and the economics of the system are assessed. The result of the base case shows that the unit cost of hydrogen production would be 6,415 won/kg H2, with a hydrogen production plant based on a 100 MW akaline electrolyzer and 25% operation rate, considering renewable energy sources with no electricity cost payment. Sensitivity study results show that the range of hydrogen unit cost efficiency can be 2,293 to 6,984 Won/kg H2, depending on the efficiency and unit cost of the electrolyzer. In case of electrolyzer operation rate and electricity unit cost, sensitivity study results show that hydrogen unit cost is in the range 934-26,180 won/kg H2.

Study on the Feasibility Test of Renewable Energy Systems for Schools (학교 건물의 신재생에너지 적용을 위한 수요/공급 분석 및 평가에 관한 연구)

  • Nam, Hyun-Jin;Park, Eun-Mi;Pae, Min-Ho;Kim, Jae-Min;Park, Hyo-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.197-204
    • /
    • 2010
  • Schools are one of the most suitable buildings for renewable energy systems because they have favourable demand profiles for renewable energy system (e.g. solar thermal collector, photovoltaic panels), modular-based building plan and large open spaces (e.g. play ground, gardens, roof) for the installation. This paper presents a methodology of the feasibility test for renewable energy systems to be installed at schools. The methodology is based on the analysis of the demand/supply profiles dynamic matching. a case study is also presented to test the applicability of the proposed assessment methodology.

A study on the optimal generating capacity of renewable energy (신재생에너지원의 최적용량에 관한 연구)

  • Kim, Yang-Il;Kim, Kwang-Mo;Lee, Seung-Hyun;Chung, Koo-Hyung;Han, Seok-Man;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.186-188
    • /
    • 2005
  • This paper presents a method of finding the optimal capacity of renewable energy in power system to prepare Kyoto-protocol. In order to determine the capacity of renewable energy, this paper finds a amount of CO2 emission and capacity of power reduction for each energy type. The proposed method performs economic dispatch including the existing facilities, renewable energy and Emission trading, and finds optimal capacity of renewable energy Power satisfying minimum total cost. Finally, the proposed idea is demonstrated with a case study.

  • PDF

A Study on the Reliability Assesment of Solar Photovoltaic and Thermal Collector System (태양광열 시스템의 신뢰성 평가에 관한 연구)

  • Park, Tae-Kook;Bae, Seung-Hoon;Kim, Sang-Kyo;Kim, Seon-Min;Kim, Dae-Hwan;Eom, Hak-Yong;Lee, Keun-Hui
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.49-64
    • /
    • 2020
  • Photovoltaic and Thermal collector (PV/T) systems are renewable energy devices that can produce electricity and heat energy simultaneously using solar panels and heat exchangers. Since PV/T systems are exposed to the outdoors, their reliability is affected by various environmental factors. This paper presents a reliability test for a PV/T system and evaluates the test results. The reliability assessment entails performance, environment, safety, and life tests. The factor that had the greatest influence on the life of the system was the hydraulic pressure applied to the heat exchanger. A test was conducted by repeatedly applying pressure to the PV/T system, and a reliability analysis was conducted based on the test results. As a result, the shape parameter (β) value of 5.6658 and the B10life 308,577 cycles at the lower 95% confidence interval were obtained.

Improving Energy Self-sufficiency in Municipal Wastewater Treatment Plant using Renewable Energy Production (능동적 신재생에너지 생산을 통한 하수처리장 에너지자립화 향상)

  • Kang, Ji-Hoon;Chae, Kyu-Jung;Kim, Dong-Soo;Yang, Hee-Jung;An, Yeong-Seop;Kim, Won-Kyoung;Kim, Jeong-Hyeon;Park, Dong-Eul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.643-643
    • /
    • 2012
  • Increasing energy prices and growing concerns about global warming address the need to improve energy self-sufficiency in many industrial and municipal sectors. Wastewater treatment plants (WWTPs) are representative of energy-consuming facilities in Korea, accounting for 5% of national energy consumption. We present renewable energy technologies and energy self-sufficiency scenarios in a municipal WWTP ($30,000m^3d^{-1}$) located in Yongin, South Korea. By employing photovoltaics (PV, 135 kW), small hydropower turbine (10 kW), and thermal energy from treated effluent (25 RT: refrigeration ton) within the WWTP, a total of 142 tonne of oil equivalent (toe) of energy was estimated to be generated, accounting for $365ton\;CO_2\;yr^{-1}$ of greenhouse gas emission reduction. Core renewable technologies under consideration include 1) hybrid solar PV system consisting of fixed PV, dual-axis PV, and building integrated PV, 2) low-head small hydropower plant specifically designed for treated effluent, 3) effluent heat recovery system for heating and air conditioning. In addition to these core technologies, smart operation and management scheme will be presented for enhancing overall energy savings and distribution within the WWTP.

  • PDF