• Title/Summary/Keyword: Renewable energy in grid-connected

Search Result 133, Processing Time 0.028 seconds

A Study about Output Filter of Paralleled Three-Phase Grid-Connected PV Inverters

  • Vu, Trung-Kien
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.271-272
    • /
    • 2011
  • The rising popularity of renewable energy sources resulted in development of the units of higher rated powers. As a result of the limited power handling capacity of individual devices, paralleling is the choice to increase the equipment rating, while keeping the THD of the current at the PCC within the agency specified standards. And their typical power circuit configuration limits the stress on individual devices to an appreciable extent. The main scope of this paper is the analysis of filter structure in paralleling inverter system's operation. Simulation results are shown to verify the theoretical analysis.

  • PDF

Energy Storage System Application for a Mini-Grid with Renewable Energy Sources (신재생 에너지원이 포함된 미니그리드에서의 에너지 저장장치 적용 연구)

  • Song, Ji-Young;Lee, Han-Sang;Lee, Kye-Byung;Jang, Gil-Soo;Kwon, Se-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.470_471
    • /
    • 2009
  • When renewable energy sources fluctuated severely are connected with power system, as conventional plants compensate electrical output with a slow response it causes a frequency and voltage problems. In this paper, we can show that the power system can be operated reliably by connecting with the energy storage which has a fast response time through controlling charge or discharge of energy storage.

  • PDF

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

Demonstration of Operating Algorithm for Stabilizing Multi-LVDC Power Grid (다회로 LVDC 전력망 안정화를 위한 운영 알고리즘 실증)

  • Yu-Kyeong Lee;Byung-Woo Park;Chun-Sung Kim;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1259-1267
    • /
    • 2023
  • In recent years, as the demand for distributed power has increased, the need for microgrids connected to grid power and renewable power generation sources has emerged. In the case of DC microgrids, reactive power does not occur, and power conversion losses are reduced compared to AC when connecting to the load and power grid[2]. With the revitalization of the DC distribution network industry, various studies and demonstrations of DC microgrids have been carried out. In the case of the recent unit distribution, its stability and effectiveness have been verified through empirical and research analysis. However, there is a lack of empirical tests to prevent chain accidents for the protection of the power grid circuits and the misoperation of the distributed power system caused by individual accidents when connecting various distributed power sources and power grids. In this paper, the operation plan of a stable multi-circuit DC distribution connection for the demonstration site was verified through the protection cooperation and operation algorithm for the stable linkage management of the DC distribution network composed of such a multi-circuit.

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source (HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발)

  • Shin, Dong-Cheol;Jeon, Jee-Hwan;Park, Sung-Jin;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

Study for Reducing Ripples of the PV Array Output in Grid-Connected Photovoltaic Power System (계통연계헝 태양광인버터의 PV Array 출력리플 저감을 위한 연구)

  • Kim, Hee-Jung;Chung, Yong-Ho;Lee, Ki-Su;Jon, Young-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.202-205
    • /
    • 2006
  • In the PV power system, output of the PV array must contain inherent ripples due to the single-phase inverter. So the function of maximum power point tracking to increase the output efficiency of PV system is degraded. Therefore, to overcome this problem, this paper presents a control strategy for the reducing ripples of the PV array output in grid-connected photovoltaic power system. The proposed control system consists of two loops the maximum power point tracking loop using the perturbation and observation method is used to calculate the reference solar array terminal voltage(Vref) for reducing ripples of the PV array output and the PI control loop is used to regulate the solar array output voltage according to the Vref. The performance of proposing control strategy is analyzed by means of the PSCAD/EMTDC simulation. As a result, we may obtain the high performance of the proposed control strategy.

  • PDF

Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems (계통연계 풍력 및 태양광발전시스템 고조파 영향 검토)

  • Lee, Sang-Min;Jung, Hyong-Mo;Yu, Gwon-Jong;Lee, Kang-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.

High Precise Measurement of Grid-Connected Inverter using DFT (DFT를 이용한 계통연계 인버터 시스템의 고정밀 계측)

  • Lee, Sang-Hyeok;Kang, Feel-Soon;Lee, Sang-Hun;Cho, So-Eog;Lee, Tae-Won;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • A precise measurement of the grid voltage is one of the essential techniques, which is required to connect a renewable energy to the grid. In general, when a filter is used to eliminate unnecessary harmonics and noises, a signal is distorted by phase delay, amplitude attenuation, and other distortions. And the response characteristic of a controller is directly affected by bandwidth of cut-off frequency of the filter. To alleviate this problems, we propose an effective algorithm based on DFT(Discrete Fourier Transform) instead of approaching the filter application. The proposed algorithm ensures high precise measurement of the grid voltage because it can extract the fundamental and harmonics from the raw signal without any distortions. The high performance of the proposed algorithm is verified by PSIM simulation and experiments of Grid-Connected VSI.