• 제목/요약/키워드: Renewable distributed generation

검색결과 151건 처리시간 0.022초

국내 주택용 전기사용자의 분산전원 설치 경제성 비교 (The comparison of the economic feasibility of small scale decentralized power supply systems in Korea)

  • 한유리;김길신
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.139.2-139.2
    • /
    • 2011
  • Compared with a traditional power system of electricity providers, distributed power systems consist of power suppliers which are small and demand-oriented. Each small power supplier tends to utilizes renewable energy sources such as solar and wind power. It is because that home renewable energy systems do not need a large scale infrastructure which is required for traditional power plants. In this work we study an economic feasibility of such a renewable energy source. We describe how renewable power generation works and what it brings in terms of economic benefits. Also, we analyze limitations by the current policy and their possible solutions.

  • PDF

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권6호
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

분산전원 연계용 데이터처리장치(FEP)의 설계 및 구현 (Design and Implementation of FEP for Interfacing of Distributed Power Generation)

  • 이성우;하복남;서인용
    • 에너지공학
    • /
    • 제18권3호
    • /
    • pp.147-155
    • /
    • 2009
  • 신 재생에너지를 비롯하여 분산전원의 사용이 매년 증가하고 있다. 분산전원의 그 특성에 의해 배전계통 및 수용가에 근접하여 위치하며 단독운전 또는 배전계통 망에 연계하여 운영될 수 있다. 만약 분산전원이 배전계통에 연계되어 운영될 경우 현재의 배전계통 운영방식과는 다르기 때문에 효율적인 분산전원의 관리 및 안정적인 배전계통을 운영하기 위해서는 분산전원의 연계에 대한 기준 및 새로운 계통운영지침 등이 재정립되어야 할 것이다. 본 논문에서는 향후 분산전원이 배전계통에 연계되어 운전될 때 분산전원의 상태를 감시 및 제어 또는 관리하기 위해서 국제 표준 프로토콜인 IEC-60870으로 분산전원 연계용 FEP(Front-End Processor, FEP)을 설계하였다. 설계한 사항을 검증하기 위하여 분산전원 상위 시스템인 주장치와 하위 시스템인 분산전원 연계용 RTU(Remote Terminal Unit, RTU)를 가지고 시험을 실시하였다. 그 결과 정상적인 데이터를 상위 시스템에서 확인을 통하여 입증하였다.

Dynamic Island Partition for Distribution System with Renewable Energy to Decrease Customer Interruption Cost

  • Zhu, Junpeng;Gu, Wei;Jiang, Ping;Song, Shan;Liu, Haitao;Liang, Huishi;Wu, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2146-2156
    • /
    • 2017
  • When a failure occurs in active distribution system, it will be isolated through the action of circuit breakers and sectionalizing switches. As a result, the network might be divided into several connected components, in which distributed generations could supply power for customers. Aimed at decreasing customer interruption cost, this paper proposes a theoretically optimal island partition model for such connected components, and a simplified but more practical model is also derived. The model aims to calculate a dynamic island partition schedule during the failure recovery time period, instead of a static islanding status. Fluctuation and stochastic characteristics of the renewable distributed generations and loads are considered, and the interruption cost functions of the loads are fitted. To solve the optimization model, a heuristic search algorithm based on the hill climbing method is proposed. The effectiveness of the proposed model and algorithm is evaluated by comparing with an existing static island partitioning model and intelligent algorithms, respectively.

The Advanced Voltage Regulation Method for ULTC in Distribution Systems with DG

  • Kim, Mi-Young;Song, Yong-Un;Kim, Kyung-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.737-743
    • /
    • 2013
  • The small-scaled onsite generators such as photovoltaic power, wind power, biomass and fuel cell belong to decarbonization techniques. In general, these generators tend to be connected to utility systems, and they are called distributed generations (DGs) compared with conventional centralized power plants. However, DGs may impact on stabilization of utility systems, which gets utility into trouble. In order to reduce utility's burdens (e.g., investment for facilities reinforcement) and accelerate DG introduction, the advanced operation algorithms under the existing utility systems are urgently needed. This paper presents the advanced voltage regulation method in power systems since the sending voltage of voltage regulators has been played a decisive role restricting maximum installable DG capacity (MaxC_DG). For the proposed voltage regulation method, the difference from existing voltage regulation method is explained and the detailed concept is introduced in this paper. MaxC_DG estimation through case studies based on Korean model network verifies the superiority of the proposed method.

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • 한국태양광발전학회지
    • /
    • 제6권1호
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

인버터 기반 신재생 에너지 발전 시스템의 계통 지원 운전을 위한 계통 전압 검출 방법 (A Detection Method of Grid Voltage for Grid Support Operation of an Inverter-based Renewable Energy Generation System)

  • 안현철;송승호
    • 신재생에너지
    • /
    • 제9권2호
    • /
    • pp.51-57
    • /
    • 2013
  • The Grid code is being strengthen as increase of renewable energy ratio. Especially, the grid connection regulations are continuously being updated for stable operation of power grids. Static grid support and Dynamic grid support must make an accurate measure at Grid connected point because they needs control algorithm individually. It has to exactly measure voltage including switching ripple at the output of the inverter generating system. In addition, it is necessary to have an accurate voltage measurement when the situation rapidly changing the grid impedance is caused by the input of serial impedance of transformer and line impedance as well as Grid Fault Device. In this paper, We propose a new detection method of grid voltage to calculate accurately the r.m.s voltage of the grid connection point along the standard required by the low voltage regulation. We verified performance through simulation grid fault device.

RPS(Renewable Portfolio Standard) 제도 도입을 고려한 전기요금변화에 관한 연구 (A Study on the Change in Production Costs and Electricity Tariffs with the Introduction of Renewable Portfolio Standard)

  • 홍희정;한석만;김발호
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.708-717
    • /
    • 2009
  • Recently, Korea government decided to introduce RPS (Renewable Portfolio Standard) mechanism which requires electricity providers to gradually increase the amount of renewable energy sources such as wind, solar, bioenergy, and geothermal. As a consequence, it is expected that the long-term fuel mix would be changed to result in more expensive production and the increased production costs would be distributed to the rate payers via electricity tariffs. This paper presents the change in long-term fuel mix in year 2020 with the four RPS scenarios of 3%, 5%, 10% and 20%, and the methodologies for collecting the increased production costs through new tariff schedule. The studies on long-term fuel mix have been carried out with the GATE-PRO (Generation And Transmission Expansion Program) optimization package, a mixed-integer program developed by the Korea Energy Economics Institute and Hongik university. Three methodologies for distributing the production costs to the rate payers have also been demonstrated.

넷 제로에너지주택의 부하매칭에 관한 연구 (A Study of Load Matching on the Net-Zero Energy House)

  • 김법전;임희원;김덕성;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제38권4호
    • /
    • pp.55-66
    • /
    • 2018
  • nZEH (net-Zero Energy House) is defined as a self-sufficient energy building where the sum of energy output generated from new & renewable energy system and annual energy consumption is zero. The electricity generated by new & renewable energy system with the form of distributed generation is preferentially supplied to electrical demand, and surplus electricity is transmitted back to grid. Due to the recent expansion of houses with photovoltaic system and the nZEH mandatory by 2025, the rapid increase of distributed generation is expected. Which means, we must prepare for an electricity-power accident and stable electricity supply. Also electricity charges have to be reduce and the grid-connected should be operated efficiently. The introduction of ESS is suggested as a solution, so the analysis of the load matching and grid interaction is required to optimize ESS design. This study analyzed the load matching and grid interaction by expected consumption behavior using actual data measured in one-minute intervals. The experiment was conducted in three nZEH with photovoltaic system, called all-electric houses. LCF (Load Cover Factor), SCF (Supply Cover Factor) and $f_{grid}$ (Grid Interaction Index) were evaluated as an analysis indicator. As a result, LCF, SCF and $f_{grid}$ of A house were 0.25, 0.23 and 0.27 respectively; That of B house were 0.23, 0.23, 0.19, and that of C were 0.20, 0.19, 0.27 respectively.

30kW급 LFG 가스터빈 발전용 연료화 정제시스템 개발 (Development of Fuel Conditioning System for 30 kW-class LFG Gasturbine Power Generation)

  • 허광범;박정극;임상규;이정빈
    • 신재생에너지
    • /
    • 제6권1호
    • /
    • pp.29-37
    • /
    • 2010
  • Biogas is a carbon neutral energy and consists of mostly methane and carbon dioxide, with smaller amounts of water vapor, and trace amounts of $H_2S$, Siloxane and other impurities. Hydrogen sulfide and Siloxane usually must be removed before the gas can be used for generation of electricity or heat. The goals of this project are to develope the Fuel conditioning system of Land Fill Gas for 30kW-Micro Gas Turbine co-generation system. The fuel conditioning system mainly consists of $H_2S$ removal system, Land Fill Gas compressor, Siloxane removal system and many filtering systems. The fuel requirement of 30kW MGT is at least 32% of $CH_4$, $H_2S$ (<30 ppm), Siloxane (<5ppb) and supply pressure (> 0.6 MPa) from LFG compressor. Main mechnical charateristics of Micro Gas Turbine system by using LFG have the specific performance; 1) high speed turbine speed (96,000 rpm) 2) very clean emmission NOx (<9 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for LFG fuel conditioning system. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of Land Fill Gas (LFG), this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.