• Title/Summary/Keyword: Renewable characteristics

Search Result 1,098, Processing Time 0.026 seconds

Software Development for the Performance Analysis of the HAWT based on BEMT (BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발)

  • Kim, Beom-Seok;Lee, Young-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.38-42
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT [Horizontal Axis Wind Turbine] was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW[FIL-20] at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

Analysis of the Characteristics of the Tidal Current Power Generation System Using Motor-Generator Set (전동기-발전기 실험장치(Motor-Generator Set)를 이용한 조류발전 시스템의 특성 분석)

  • An, Won-Young;Lim, Hyung-Tack;Lee, Seok-Hyun;Kim, Gun-Su;Jo, Chul-Hee
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.19-24
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured output power in M-G Set (Motor-Generator Set) and MATLAB/Simulink. We installed M-G Set (Motor-Generator Set) and did a simulation using MATLAB/Smulink. The simulation consisted of the tidal current turbine, PMSG, converter, and three-phase PWM inverter. Also, the speed control of the generator was performed using machine side converter. And we measured output voltage, current, power of the generator and the output power of three-phase PWM inverter.

Heat and mass transfer characteristics in steam reforming reactor (수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구)

  • Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.56-63
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reforming reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. From various parametric studies, significance of heat transfer is emphasized in steam reforming reaction.

  • PDF

Thermal Characteristics of Hybrid Solar Receiver using a Solar and Combustion heating (태양열과 가스 연소열을 적용한 복합 태양열 흡수기의 열특성 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Yoon, Hwan-Ki;Yu, Chang-Kyun;Lee, Sang-Nam
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.33-38
    • /
    • 2006
  • The Dish/Stirling system with the Stirling engine is currently used to convert solar energy directly to electrical energy. Successful operation of dish/Stirling system is supported by hybrid system, which will allow continuous operation driven by solar and combustion heating. The hybrid Receiver has to be provided with an additional combustion system. The heat pipe receiver and conbustion system were manufactured and tested for thermal characteristics of receiver. Maximum temperature difference along the heat pipe surface is $200^{\circ}C$. Emission measurements showed low NOx values of 28 to 46 ppm and very high CO values of 18 to 201 ppm.

  • PDF

Characteristics of an HTS SMES for Solar Power System

  • Kim Woo-Seok;Lee Seung-wook;Hahn Song-yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.44-46
    • /
    • 2005
  • A SMES can be a perfect alternative energy storage device to the chemical batteries which are needed by most of the renewable energy supply systems. The chemical battery storage system is so expensive to maintain and causes another environmental problem because they are not recyclable. But, SMES has semi-permanent lifetime and no environmental problems cause it only need coolants which is non flammable, clean and recyclable gas. In order to verify the feasibility of a SMES for the renewable electrical power supply system, electrical characteristics of a test SMES coil with the photovoltaic power system were analyzed in this paper. Simulation results show that we can charge 40 amps of current in test SMES coil using solar power system. The experimental verification will be performed just after development of the peak power tracking system for the solar system.

Application of FESS Controller for Load Frequency Control

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.361-366
    • /
    • 2013
  • This paper presents the effect on application of the flywheel energy storage system (FESS) for load frequency control (LFC) of an interconnected 2 area power system. To do this, the control characteristics with the FESS were compared with that of the conventional governor controller. The controller for the FESS control and the governor control used a PID type controller. Both the FESS PID controller and the governor PID controller using genetic algorithm (GA) were designed to optimize the PID parameters. The frequency and generation output characteristics with the only FESS controller and with the only conventional governor controller were compared. To verify robust performance of the FESS controller, the computer simulations were performed under various disturbances. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional governor controller.

Performance Characteristics of Small Tubular-type Hydroturbine according to the Guide Vane Opening Angle by Experiment and CFD (실험 및 CFD에 의한 가이드베인 개도에 따른 소형 튜블러 수차의 성능특성)

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.44-49
    • /
    • 2008
  • As the alternative energy, renewable energy should have been developing by many techniques, in order to substitute the fossil fuel which will be disappeared in the near future. One of the small hydropower generator, main concept of tubular turbine is based on using the different water pressure levels in pipe lines, energy which was initially wasted by using a reducing valve at the end of the pipeline, is collected by turbine in the hydro power generator. A propeller shaped hydro turbine has been used in order to use this renewable pressure energy in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the guide vane opening angle are examined in detail. First, it ensures the reliance of CFD by that of compared with experiment data. After all, the results of performance characteristics of the CFD and experiment show to confirm the data that power, head and efficiency of less than 4%, 2% and 5% respectively. Moreover influences of pressure, tangential and axial velocity distributions on turbine performance are investigated.

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.

The Exploratory Study on the Entry Mode for Indian Green Industry (인도 녹색산업 진입 전략에 대한 탐색적 연구 - 재생에너지 분야를 중심으로 -)

  • Park, Hyun-Jae;Park, Se-Hun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.55
    • /
    • pp.265-290
    • /
    • 2012
  • CEPA (Comprehensive Economic Partnership Agreement) between India and Korea may vitalize Korean economy more and more. Currently most of Korean firms have entered into manufacturing industries like electronics and automobiles. But only a few Korean companies are trying to penetrate into Indian green industry so this paper suggest how to enter into Indian green industry, especially renewable energy sectors. First, Exporting main shaft, tower-flange and polysilicon products can be considered, as a first step of entry mode. Second, entry mode based on contract like technology licensing, strategic alliance and joint venture establishment can be also one of options. For example, Korean solar energy industry which show more competitiveness than that of Indians should try to make technological licensing on PV modules. In addition to this, they should also try to make joint ventures with right Indian partners and build up 'Solar City' nearby regions like Gurgaon in India where many Korean firms are located. Korean shipbuilding firms like Hyundai Engineering which keep on developing wind turbo engines can also try to make strategic alliance with Indian firms like Suzlon which has strong competitiveness. After that, they should explore Korean and Indian wind sector markets together. Third, brownfield investment can be last and final option as a entry mode as we consider the peculiar characteristics of renewable energy industry. Lastly, Korean government which are rush to indulge into green business should formulate more proper and realistic policies to give big incentives the concerned firms which are trying to open international green market so government should make Korean green firms not to lose good market opportunities related to green industry like renewable energy sectors. Renewable energy sectors are basically regarded as infrastructures so close contact to Indian central government as well as state government will be also required.

  • PDF