• Title/Summary/Keyword: Renewable Energy Source Simulator

Search Result 9, Processing Time 0.022 seconds

Deve lopment of Simulator System for Microgrids with Renewable Energy Sources

  • Jeon, Jin-Hong;Kim, Seul-Ki;Cho, Chang-Hee;Ahn, Jong-Bo;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.409-413
    • /
    • 2006
  • This paper deals with the design and testing of a simulator system for microgrids with distributed generations. This system is composed of a Real Time Digital Simulator (RTDS) and a power amplifier. The RTDS parts are operated for real time simulation for the microgrid model and the distributed generation source model. The power amplifiers are operated fur amplification of the RTDS's simulated output signal, which is a node voltage of the microgrid and distributed generation source. In this paper, we represent an RTDS system design, specification and test results of a power amplifier and simulation results of a PV (Photovoltaic) system and wind turbine system. The proposed system is applicable for development and performance testing of a PCS (Power Conversion System) for renewable energy sources.

Development of Battery Simulator for Performance Verification of MW-class PCS (MW급 PCS 성능검증용 배터리 모의장치 개발)

  • Lee, Jong-Hak;In, Dong-Seok;Heo, Nam-Eok;Park, Young-Min;Park, Ki-Won;Kwon, Byung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.160-167
    • /
    • 2016
  • An energy storage system (ESS) is applied to increase the energy efficiency of large plants or buildings that consume much energy, to improve the power quality of power systems, and to stabilize renewable energy source such as photovoltaic or wind turbine. The ESS is composed of a power conditioning system (PCS) and an energy storage. The battery is used as the energy storage. The battery is needed to design and verify a hardware and control system of PCS. Usually, a battery simulator is used instead of a battery, which is costly and hard to manage. In this paper, the development of the battery simulator for performance verification of the MW-class PCS is described. The battery simulator simulates the charging and discharging characteristics of batteries to design and verify the hardware and control system of PCS.

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

Fuel Economy of Ultracapacitor & Battery Hybrid vehicle Using Dynamic Programing (울트라케페시터와 배터리를 보조 에너지원으로 사용하는 하이브리드 자동차의 다이나믹 프로그래밍을 이용한 최적 연비 계산)

  • Jeon, You-Kwang;Park, Young-Il;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.537-540
    • /
    • 2005
  • A battery is the primary energy source device presently used in hybrid electric vehicle. It can store much energy, but cannot provide enough current without inefficient units. However, an ultracapcitor can provide much current, but cannot store much energy. It will have better fuel economy by combining the two energy sources in parallel. The purpose of this paper is making the simulator of the two HEV systems. The one has only battery, the other have battery and ultarcapacitor in parallel. To compare the fuel economy, dynamic programing was used for optimization and prius was used for HEV model.

  • PDF

Inplementation of a Hydrogen Leakage Simulator with HyRAM+ (HyRAM+를 이용한 수소 누출 시뮬레이터 구현)

  • Sung-Ho Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.551-557
    • /
    • 2024
  • Hydrogen is a renewable energy source with various characteristics such as clean, carbon-free and high-energy, and is internationally recognized as a "future energy". With the rapid development of the hydrogen energy industry, more hydrogen infrastructure is needed to meet the demand for hydrogen. However, hydrogen infrastructure accidents have been occurring frequently, hindering the development of the hydrogen industry. HyRAM+, developed by Sandia National Laboratories, is a software toolkit that integrates data and methods related to hydrogen safety assessments for various storage applications, including hydrogen refueling stations. HyRAM+'s physics mode simulates hydrogen leak results depending on the hydrogen refueling station components, graphing gas plume dispersion, jet frame temperature and trajectory, and radiative heat flux. In this paper, hydrogen leakage data was extracted from a hydrogen refueling station in Samcheok, Gangwon-do, using HyRAM+ software. A hydrogen leakage simulator was developed using data extracted from HyRAM+. It was implemented as a dashboard that shows the data generated by the simulator using a database and Grafana.

Development of wind power simulator using MATLAB SIMULINK (MATLAB_SIMULINK를 이용한 풍력 발전 시뮬레이터 개발)

  • Park, won-hyeon;Gebreslassie, Mihret;Park, Ji-Hyeon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.665-667
    • /
    • 2016
  • Due to the depletion of fossil fuels and the environmental problems of recent years it has been increasing every year the interest in renewable energy. Renewable energy is clean and the typical method using solar and wind power and solar power as an energy source reusable. Wind power generation system of which it is a method of using the natural wind, convert the kinetic energy of the wind into electrical energy. Traditionally, implementing a wind power system, wind tunnel tests was to configure an environment similar to a real wind tunnel experiments. However, it costs a lot of money problems hagieneun configure these wind tunnel tests. Therefore, by this paper, in consideration of the fact, the characteristics of the generator in the wind tunnel experiment to experiment with such a wind tunnel test using a bad test by configuring the motor and controls the motor generator to obtain a result similar to the wind tunnel experiment.

  • PDF

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

ZnTe:O/CdS/ZnO intermediate band solar cells grown on ITO/glass substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.197.2-197.2
    • /
    • 2015
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, the ZnTe:O/CdS/ZnO structure was fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 4.5 J/cm2. The base pressure of the chamber was kept at a pressure of approximately $4{\times}10-7Torr$. ZnO thin film with thickness of 100 nm was grown on to ITO/glass, and then CdS and ZnTe:O thin film were grown on ZnO thin film. Thickness of CdS and ZnTe:O were 50 nm and 500 nm, respectively. During deposition of ZnTe:O films, O2 gas was introduced from 1 to 20 mTorr. For fabricating ZnTe:O/CdS/ZnO solar cells, Au metal was deposited on the ITO film and ZnTe:O by thermal evaporation method. From the fabricated ZnTe:O/CdS/ZnO solar cell, current-voltage characteristics was measured by using HP 4156-a semiconductor parameter analyzer. Finally, solar cell performance was measured using an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation intensity of 100 mW cm-2.

  • PDF