• 제목/요약/키워드: Renewable Energy Source Simulator

검색결과 9건 처리시간 0.025초

Deve lopment of Simulator System for Microgrids with Renewable Energy Sources

  • Jeon, Jin-Hong;Kim, Seul-Ki;Cho, Chang-Hee;Ahn, Jong-Bo;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.409-413
    • /
    • 2006
  • This paper deals with the design and testing of a simulator system for microgrids with distributed generations. This system is composed of a Real Time Digital Simulator (RTDS) and a power amplifier. The RTDS parts are operated for real time simulation for the microgrid model and the distributed generation source model. The power amplifiers are operated fur amplification of the RTDS's simulated output signal, which is a node voltage of the microgrid and distributed generation source. In this paper, we represent an RTDS system design, specification and test results of a power amplifier and simulation results of a PV (Photovoltaic) system and wind turbine system. The proposed system is applicable for development and performance testing of a PCS (Power Conversion System) for renewable energy sources.

MW급 PCS 성능검증용 배터리 모의장치 개발 (Development of Battery Simulator for Performance Verification of MW-class PCS)

  • 이종학;인동석;허남억;박영민;박기원;권병기
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.160-167
    • /
    • 2016
  • An energy storage system (ESS) is applied to increase the energy efficiency of large plants or buildings that consume much energy, to improve the power quality of power systems, and to stabilize renewable energy source such as photovoltaic or wind turbine. The ESS is composed of a power conditioning system (PCS) and an energy storage. The battery is used as the energy storage. The battery is needed to design and verify a hardware and control system of PCS. Usually, a battery simulator is used instead of a battery, which is costly and hard to manage. In this paper, the development of the battery simulator for performance verification of the MW-class PCS is described. The battery simulator simulates the charging and discharging characteristics of batteries to design and verify the hardware and control system of PCS.

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

울트라케페시터와 배터리를 보조 에너지원으로 사용하는 하이브리드 자동차의 다이나믹 프로그래밍을 이용한 최적 연비 계산 (Fuel Economy of Ultracapacitor & Battery Hybrid vehicle Using Dynamic Programing)

  • 전유광;박영일;이장무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.537-540
    • /
    • 2005
  • A battery is the primary energy source device presently used in hybrid electric vehicle. It can store much energy, but cannot provide enough current without inefficient units. However, an ultracapcitor can provide much current, but cannot store much energy. It will have better fuel economy by combining the two energy sources in parallel. The purpose of this paper is making the simulator of the two HEV systems. The one has only battery, the other have battery and ultarcapacitor in parallel. To compare the fuel economy, dynamic programing was used for optimization and prius was used for HEV model.

  • PDF

HyRAM+를 이용한 수소 누출 시뮬레이터 구현 (Inplementation of a Hydrogen Leakage Simulator with HyRAM+)

  • 황성호
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.551-557
    • /
    • 2024
  • 수소는 청정, 무탄소, 고에너지등 다양한 특징을 가진 재생에너지원으로 국제적으로 '미래에너지'로 인정받고 있다. 수소에너지 산업의 급속한 발전과 더불어 수소 수요를 충족시키기 위하여 더 많은 수소 인프라가 필요한 실정이다. 그러나 수소 인프라 사고가 빈번한 발생함으로 인해, 수소산업 발전에 걸림돌이 되고 있다. 미국 Sandia National Laboratories에서 개발한 HyRAM+는 수소충전소를 포함한 다양한 저장 응용 분야에 대한 수소 안전 평가와 관련된 데이터와 방법을 통합하는 소프트웨어 툴킷이다. HyRAM+의 물리 모드는 수소충전소 컴포넌트에 따라 수소누출 결과를 모사하여 가스 플룸 분산, 제트 프레임 온도와 궤적 그리고 복사 열속 등을 그래프로 나타낸다. 본 논문에서는 강원도 삼척시에 있는 수소충전소를 대상으로하여 HyRAM+ 소프트웨어를 이용하여 수소 누출 데이터를 추출하였다. HyRAM+에서 추출한 데이터를 이용하여 수소 누출(Leakage) 발생 시뮬레이터를 개발하였다. 데이터베이스와 그라파나(Grafana)를 이용하여 시뮬레이터에서 발생한 데이터를 보여주는 대쉬보드(Dashboard)로 구현하였다.

MATLAB_SIMULINK를 이용한 풍력 발전 시뮬레이터 개발 (Development of wind power simulator using MATLAB SIMULINK)

  • 박원현;미흐렛 게브레스랄새;감지현;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.665-667
    • /
    • 2016
  • 최근 화석연료의 고갈 및 환경문제로 인해 신재생 에너지에 대한 관심이 해마다 증가하고 있다. 신재생에너지는 깨끗하고 재사용이 가능한 에너지원으로 풍력과 태양광을 이용한 방법이 대표적이다. 이들 중 풍력 발전시스템은 자연의 바람을 이용하여 바람의 운동에너지를 전기에너지로 변환하는 방식이다. 기존에는 풍력 발전시스템을 구현하여 풍동실험을 하기 위해 실제 풍력과 유사한 환경을 구성하여 풍동실험을 하였다. 하지만, 이러한 풍동실험을 구성하기에는 비용이 커지는 문제가 발생한다. 본 논문에서는 이러한 풍동실험을 모터와 발전기를 이용한 테스트 베드를 구성하여 실험할 때 실제 풍동실험에서 발전기의 특성을 고려하여 모터를 제어함으로서 풍동실험과 유사한 결과를 얻고자한다.

  • PDF

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제3권1호
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

ZnTe:O/CdS/ZnO intermediate band solar cells grown on ITO/glass substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.197.2-197.2
    • /
    • 2015
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, the ZnTe:O/CdS/ZnO structure was fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 4.5 J/cm2. The base pressure of the chamber was kept at a pressure of approximately $4{\times}10-7Torr$. ZnO thin film with thickness of 100 nm was grown on to ITO/glass, and then CdS and ZnTe:O thin film were grown on ZnO thin film. Thickness of CdS and ZnTe:O were 50 nm and 500 nm, respectively. During deposition of ZnTe:O films, O2 gas was introduced from 1 to 20 mTorr. For fabricating ZnTe:O/CdS/ZnO solar cells, Au metal was deposited on the ITO film and ZnTe:O by thermal evaporation method. From the fabricated ZnTe:O/CdS/ZnO solar cell, current-voltage characteristics was measured by using HP 4156-a semiconductor parameter analyzer. Finally, solar cell performance was measured using an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation intensity of 100 mW cm-2.

  • PDF