• 제목/요약/키워드: Renewable Design

검색결과 972건 처리시간 0.026초

LCC분석 기법을 활용한 신재생에너지 최적 설계 방안 연구 (A Study of renewable energy optimal design using the LCC analysis)

  • 송호열;김정욱
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.45-50
    • /
    • 2015
  • 온실가스 배출량이 세계 6위인 우리나라는 건물의 운영과 유지 및 관리에 소비되는 에너지로 인한 온실가스 배출량을 줄이고자 공공건축물을 대상으로 신재생에너지 시스템을 통하여 에너지를 생산하도록 하는 공공의무화 제도(RPS)를 시행하고 있다. 이에 본 연구에서는 선행되었던 기존 연구의 동향을 분석하여 에너지원별로 적정 조합 및 적용 비율을 도출하였고, 동적 에너지 프로그램을 이용하여 에너지소비량을 시뮬레이션 하였으며, 산출된 결과를 토대로 초기투자비, 에너지비, 보수교체비, 유지관리비를 산출하였다. 분석결과 지열 100% 조합이 총 비용 2,105,974,344원으로 총 생애주기 비용이 가장 적은 것으로 나타났다.

Determining Appropriate Capacity on Installing Photovoltaic System at Deteriorated Educational Facilities

  • Lhee, Sang Choon;Choi, Young Joon;Choi, Yool
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.23-29
    • /
    • 2014
  • With high acknowledgements of environmental conservation and energy saving, many architectural technologies using renewable energy have been recently applied at buildings which take about 20% of total energy consumption. Among renewable energy sources, the photovoltaic is considered as the most highly potential one due to advantages of infiniteness and cleanliness. Also, projects to install renewable energy systems have been continuously performed at deteriorated educational facilities as energy efficient remodeling projects or green school projects by the Korean government. This paper proposes appropriate capacities by school level on installing photovoltaic systems at deteriorated school buildings, based on the balance of annual electricity power demand and supply between buildings and systems. Using the Visual DOE program and Merit program, the appropriate installment capacity of photovoltaic system turned out be 40kWp at elementary school building and 60kWp at middle and high ones. In addition, annual energy use proved to be reduced by 20.2% at elementary school, 26.9% at middle school, and 21.0% at high school by installing photovoltaic systems with the appropriate capacities.

스마트그리드 실시간요금과 연동되는 수요반응을 유도하기 위한 HEMS 설계에 관한 연구 (A Study on Design of Home Energy Management System to Induce Price Responsive Demand Response to Real Time Pricing of Smart Grid)

  • 강동주;박선주;최수정;한승재
    • 조명전기설비학회논문지
    • /
    • 제25권11호
    • /
    • pp.39-49
    • /
    • 2011
  • Smart Grid has two main objectives on both supply and demand aspects which are to distribute the renewable energy sources on supply side and to develop realtime price responses on demand side. Renewable energy does not consume fossil fuels, therefore it improves the eco-friendliness and saves the cost of power system operation at the same time. Demand response increases the flexibility of the power system by mitigating the fluctuation from renewable energies, and reduces the capacity investment cost by shedding the peak load to off-peak periods. Currently Smart Grid technologies mainly focus on energy monitoring and display services but it has been proved that enabling technologies can induce the higher demand responses through many pilot projects in USA. On this context, this paper provides a price responsive algorithm for HEMS (home energy management system) on the real time pricing environment. This paper identifies the demand response as a core function of HEMS and classifies the demand into 3 categories of fixed, transferable, and realtime responsive loads which are coordinated and operated for the utility maximization or cost minimization with the optimal usage combination of three kinds of demand.

고 흡수율과 고방사율 다중 코팅 설계를 위한 전산모사 연구 (Computer Simulation Study for Higher Solar Absorptance and Lower Emittance Multilayer Coating Design)

  • 마사우드 하시미;무하마드 파??;이시크 아메드 오지;강은철;김기세;이의준
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.81-91
    • /
    • 2003
  • 본 연구에서는 복층으로 구성된 $WSio_2Al$ 금속절연체의 상세를 보여주고 있는데, 금속과 절연체의 합성물질은 태양 흡수율의 설계와 열적인 현상을 보여주기 위해 종종 사용된다. 금속의 접착기면 위에 얇은 복층 코팅으로 구성되는 디자인은 태양 스펙트럼의 파장권역에서 선택적 흡수를 위함이다. 본 연구는 태양 복사의 열성능 평가를 위해 금속과 절연체 필름의 방사율, 태양흡수율, 코팅순서, 미 반사층(AR)의 두께, 코팅 두께와 코팅 면수, 전체 코팅 두께 등에 대해 시뮬레이션 하였다. 그 결과 네 겹의 코팅설계에서 $Sio_2AR$ 75 nm 두께와 각각의 층에서 $0.5\sim0.7$의 가변 금속부분 구성이 가장 우수한 성능을 갖는 것으로 나타났다. 또한 시뮬레이션으로 금속과 절연체 합성물의 최적의 구성과 각각의 코팅 두께에 대한 예측이 가능했으며, 최대 태양흡수율은 0.94, 방사율은 0.115의 금속과 절연체의 합성물을 구성할 수 있었다.

건축물에 적용된 태양광발전시스템의 운전실태 조사 및 보급 확대에 관한 연구 (A Study on Investigating Actual State of Operation of Building Integrated Photovoltaic for the Spread of BIPV)

  • 김병준;김주영;홍원화
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2005년도 추계학술대회 논문집
    • /
    • pp.327-330
    • /
    • 2005
  • Today, the need for alternative energy has increased due to the global environmental problems and energy depletion. In order to solve a global environmental matter and an energy issue simultaneously, the application of the renewable energies in building has been constantly demanded. therefore, we must develop new energy resources that are abundant and provide substitutes for fossil fuels and we must study the application method of the renewable energies in building. Among renewable energies, the solar energy(photovoltaic system) is clean, inexhaustible, and available everywhere in the world and is judged to have the application possibility in building. Daegu city has a plan of putting a photovoltaic system on large buildings. For instance, EXCO, exhibition and convention building, and dormitory in Kyungpook National University, Dongho elementary school, Osan building in Keimyung University, Young korea academy in Daegu, are on the process of having a photovoltaic system. Therefore a study on the performance of photovoltaic system is important for the system design and maintenance. this paper describes the first invest cost, and performance test of the 95kW utility-interactive photovoltaic power system.

  • PDF

Validation of Generalized State Space Averaging Method for Modeling and Simulation of Power Electronic Converters for Renewable Energy Systems

  • Rimmalapudi, Sita R.;Williamson, Sheldon S.;Nasiri, Adel;Emadi, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.231-240
    • /
    • 2007
  • This paper presents an advanced modeling and simulation technique applied to DC/DC power electronic converters fed through renewable energy power sources. The distributed generation (DG) system at the Illinois Institute of Technology, which employs a phase-l system consisting of a photovoltaic-based power system and a phase-2 system consisting of a fuel cell based primary power source, is studied. The modeling and simulation of the DG system is done using the generalized state space averaging (GSSA) method. Furthermore, the paper compares the results achieved upon simulation of the specific GSSA models with those of popular computer aided design software simulations performed on the same system. Finally, the GSSA and CAD software simulation results are accompanied with test results achieved via experimentation on both, the PV-based phase-l system and the fuel cell based phase-2 power system.

Nonlinear responses of energy storage pile foundations with fiber reinforced concrete

  • Tulebekova, Saule;Zhang, Dichuan;Lee, Deuckhang;Kim, Jong R.;Barissov, Temirlan;Tsoy, Viktoriya
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.363-375
    • /
    • 2019
  • A renewable energy storage pile foundation system is being developed through a multi-disciplinary research project. This system intends to use reinforced concrete pile foundations configured with hollowed sections to store renewable energy generated from solar panels attached to building structures in the form of compressed air. However previous research indicates that the compressed air will generate considerable high circumferential tensile stresses in the concrete pile, which requires unrealistic high hoop reinforcement ratio to avoid leakage of the compressed air. One possible solution is to utilize fiber reinforced concrete instead of placing the hoop reinforcement to resist the tensile stress. This paper investigates nonlinear structural responses and post-cracking behavior of the fiber reinforced concrete pile subjected to high air pressure through nonlinear finite element simulations. Concrete damage plasticity models were used in the simulation. Several parameters were considered in the study including concrete grade, fiber content, and thickness of the pile section. The air pressures which the pile can resist at different crack depths along the pile section were identified. Design recommendations were provided for the energy storage pile foundation using the fiber reinforced concrete.

Comparison of smartphone accelerometer applications for structural vibration monitoring

  • Cahill, Paul;Quirk, Lucy;Dewan, Priyanshu;Pakrashi, Vikram
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Recent generations of smartphones offer accelerometer sensors as a standard feature. While this has led to the development of a number of related applications (apps), there has been no study on their comparative or individual performance against a benchmark. This paper investigates the comparative performance of a number of smartphone accelerometer apps amongst themselves and to a calibrated benchmark accelerometer. A total of 12 apps were selected for testing out of 90 following an initial review. The selected apps were subjected to sinusoidal vibration testing of varying frequency and the response of each compared against the calibrated baseline accelerometer. The performance of apps was quantified using analysis of variance (ANOVA) and test of significance was carried out. The apps were then compared for a realistic dynamic scenario of measuring the acceleration response of a bridge due to the passage of a French Train $\grave{a}$ Grande Vitesse (TGV) in a laboratory environment.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

Investigation of EVA Accelerated Degradation Test for Silicon Photovoltaic Modules

  • Kim, Jaeun;Rabelo, Matheus;Holz, Markus;Cho, Eun-Chel;Yi, Junsin
    • 신재생에너지
    • /
    • 제17권2호
    • /
    • pp.24-31
    • /
    • 2021
  • Renewable energy has become more popular with the increase in the use of solar power. Consequently, the disposal of defective and old solar panels is gradually increasing giving rise to a new problem. Furthermore, the efficiency and power output decreases with aging. Researchers worldwide are engaged in solving this problem by developing eco-module technologies that restore and reuse the solar panels according to the defect types rather than simple disposal. The eco-module technology not only solves the environmental problem, but also has economic advantages, such as extending the module life. Replacement of encapsulants contributes to a major portion of the module maintenance plan, as the degradation of encapsulants accounts for 60% of the problems found in modules over the past years. However, the current International Electrotechnical Commission (IEC) standard testing was designed for the commercialization of solar modules. As the problem caused by long-term use is not considered, this method is not suitable for the quality assurance evaluation of the eco-module. Therefore, to design a new accelerated test, this paper provides an overview of EVA degradation and comparison with the IEC and accelerated tests.