• Title/Summary/Keyword: Removal of soil from fabric

Search Result 24, Processing Time 1.121 seconds

Detergency of Particulate Soil of PET Fabric Finished with Hydrophilic and Hydrophobic Chemicals (친수 및 소수처리 PET직물의 고형오구의 세척성)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.11
    • /
    • pp.1237-1245
    • /
    • 2012
  • The effect of hydrophilicity and hydrophobicity of PET fabric on the detergency of particulate soil were investigated as functions of the concentration of hydrophilic and hydrophobic chemicals, surfactant concentration, ionic strength, adhesion and removal time, and pH. The detergency of the particulate soil was determined by the adhesion of particles to and their removal from fabric, the PET fabric and ${\alpha}-Fe_2O_3$ were used as textile materials and for the model of particulate soil, respectively. The hydrophilic and hydrophobic finish for PET fabric was treated with a polyester, silicone and fluorine organic compound of resin respectively. The adhesion of particulate soil to fabric treated with hydrophobic chemicals were slightly higher but its removal from fabric treated with hydrophobic chemicals was largely higher than fabric treated with a hydrophilic chemical regardless of solution conditions such as the concentration of hydrophilic and hydrophobic chemicals, surfactant concentration, ionic strength, adhesion and removal time, and pH. Therefore, hydrophobic treatment for fabric had a more positive effect than the hydrophilic treatment on the detergency of particulate soil.

Detergency of Particulate Soil in Anion/Nonionic Surfactant Mixed Solution (음이온/비이온 혼합 계면활성제 용액에서의 고형오구의 세척성)

  • Kang, In-Sook
    • Fashion & Textile Research Journal
    • /
    • v.13 no.5
    • /
    • pp.790-796
    • /
    • 2011
  • This study was designed to investigate the influence of ratio of anionic/nonionic surfactant mixture on detergency of particulate soil under various solutions. The detergency of the particulate soil was determined by adhesion of particle to fabric and its removal from fabric separately. The PET fabric and ${\alpha}-Fe_2O_3$were used as materials of textile and model of particulate soil, respectively. The detergency was investigated as a function of surfactants concentration, ionic strength, kinds of electrolyte and mole numbers of oxyethylene ether of nonionic surfactant in different ratio of anionic/nonionic surfactant mixture. Although some deviations exist, the adhesion of particle to fabric generally increased with decreasing its removal from fabric. The detergency of particulate soil on PET fabric was relatively higher in anionic/nonionic surfactant mixed solution than in each single surfactant solution, but the influence of ratio of anionic/nonionic surfactant mixture on detergency of particulate soil was low. Generally the detergency of particulate soil on fabric was at its maximum at 0.1% surfactant concentration, $1{\times}10^{-3}$ ionic strength, $Na_5P_3O_{10}$ electrolytes and 10 mole numbers of oxyethylene ether of nonionic surfactant, regardless of ratio of anionic/nonionic surfactant mixture.

Characteristics of Artificially Soiled Fabrics Containing Ferric Oxinate as a Tracer (Ferric Oxinate를 標職物質로 사용한 人工汚染布의 洗滌特性)

  • Ahn, Kyung Cho;Kim, Sung Reon
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.83-89
    • /
    • 1996
  • Carbon black has been used as a particulate soil to prepare artificial soiled fabrics for detergent study but it has two major defects. The one is the difficulty of quantitative analysis of carbon black for evaluate the detergency, the other is that there is no reliable correlation between the removal of carbon black and oily soil which is the major component of natural soil. In this study ferric oxinate was used as a particulate soil since it is in black color and can be soiled on fabric by suspension in water or by solution in chloroform and it is easily analysed quantitatively by extracting it from soiled fabric with chloroform to get correct value of soil removal. The characteristics of soil removal of ferric oxinate were compared with that of carbon black and Sudan black, an oil soluble dye, which had been proved that it's detergency correlated with that of oily soil The soil removal of ferric oxinate and Sudan black estimated from quantitative analysis and from K/S value were in good agreement whereas the result calculated by simple reflectance was consistently low. The soil removal of ferric oxinate was exceeded from that of carbon black without regard to surfactants, Triton and Las, but the effect of washing conditions such as temperature and washing time on soil removal of both soils with different suffactants showed no considerable difference. Though the soil removal of Sudan black was little effected by the conditions, the soil removal in Triton exceeded considerably that of in Las, which is the characteristic of oily soil. Thus the soil removal of Sudan black was in good agreement with ferric oxinate in Triton, a non-ionic surfactant, and with carbon black in Las, an artionic surfactant. We concluded that ferric oxinate is a more realistic model particulate soil for artificial soiled cotton fabric washed with non-ionic surfactant than carbon black.

  • PDF

Effects of Mixed Characteristics of Oily Soil on Detergency of PET Fabric in Oily/Particulate Soil Mixed System (지용성/고형오구의 혼합오염계에서 지용성오구의 혼합특성에 따른 PET직물의 세척성)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.10
    • /
    • pp.1242-1251
    • /
    • 2011
  • This study investigates the effect of mixed characteristics of oily soil such as mixed ratio, polarity of oily soil on contact angle of fabric, removal of oily and particulate soil from PET fabric in oily/particulate soil mixed system. The contact angle of fabric in the surfactant solution with suspended oily soil was examined as a fundamental environment of detergency of soil from fabrics. Detergency was investigated as function of mixed ratios of oily/ particulate soil, type of oily soil, surfactants concentration, surfactant type and temperature of detergency in surfactant solution. The contact angle of fabric in surfactant solution sharply increased with mixing nonpolar oily soil; in addition, the contact angle slightly increased with increasing contents of oily soil and decreased with increasing surfactant concentration. The removal of oily and particulate soil from fabric was higher in the solution mixed with polar versus nonpolar oily soil. The detergency increased with increasing surfactant concentration and the increased temperature of surfactants solution that were relatively improved in NPE compared to DBS solutions, The results indicated that the detergency of oily and particulate soil showed a similar trend in oily/ particulate mixed soil systems. The general contact angle of fabric was well related with the detergency of oily and particulate soil in oily/particulate mixed soil system, therefore, the primary factor determining the detergency of soil in oily/particulate mixed soil system may be the contact angle of fabric caused by wettability.

Laundering Factors in Soil Removal

  • Kadolph, Sara J.;Schofield-Tomschin, Sherryl A.;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • Assessing soil removal is of interest to the washing machine industry because of government-mandated energy savings and changes in detergent formulation and consumer laundry practices. We designed this study to examine the laundry process from a holistic perspective by integrating factors perceived to be of importance. Our purpose was to assess the impact of selected variables (fabric and soil type, wash temperature and time. detergent amount, and degree of agitation) on soil removal using accelerated laundry conditions. We used the Taguchi method to develop the research design and ANOVA to analyze the data. Although soil removal was affected by fabric type, soil type, type and amount of detergent, degree of agitation, wash time and temperature, and water hardness and volume, wash temperature was the most significant variable.

  • PDF

Removal of Oily Soils from the PET Fabric Treated with Hydrophilic Chemicals (친수화처리 PET직물에서 지용성오염의 제거)

  • Chung Hae Won;Obendorf S. Kay
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.1 s.41
    • /
    • pp.65-71
    • /
    • 1992
  • The influences of hydrophilic treatment of the PET fabric on soiling and detergency of triolein were studied. The amounts of residual triolein were determined by radiotracer analysis, and distributions of the unsaturated oils on the fabric were evaluated by backscattered electron images. The removal of triolein was increased when the PET fabrics were treated. SRP pretreatment was more effective on the oily soil removal than the of addition of SRP in the detergent. The oily soil of triolein only was packed between the fibers, but mixed soil was distributed around the fibers. When the mixed soil was used, detergent solution could penetrate the continuous interfiber capillaries, this would be one of the reasons that mixed soil was removed rmore extensively.

  • PDF

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

Studies on the Detergency of Particulate Soil using Vacuum Cleaner Dirt as Model (진공청소기 분진을 모델로 한 고형오염의 세척성에 관한 연구)

  • Kang In-Sook;Kim Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.286-294
    • /
    • 1989
  • This Study has treated the effects of fiber, surfactants, temperature, surfactant concentration, pH, electrolyte, fatty acid contents and mechanical force on the removal of particulate soil from fabric, vacuum cleaner dirt was used as model particulate soil. The fabrics were soiled with mixture of vacuum cleaner dirt and fatty soil, and washed in Terg-O-tometer. The detergency was evaluated by measuring reflectance of a fabric before and after washing. The results were as follows. 1. The fiber type showed a different pattern of soil removal with surfactants. In general, particulate soil removal increased in the following order Acetate>PET. Nylon>Cotton. Particulate soil removal, which is affected by the surfactant type, increased in the following order NPE $(EO)_{10}\leqq$Soap>SLS>DBS>Tween 80. 2. The influence of temperature on the particulate soil removal was very complex because efficiency of removal was varied with surfactant and fiber types. The washing efficiency of NPE $(EO)_{10}$ was highest at around $40^{\circ}C\;and\;60^{\circ}C$ with cotton and PET but the washing efficiency of DBS was the highest at $60^{\circ}C$ with cotton, decreased monotonously with increasing temperature with PET 3. The detergency of particulate soil increased with increasing surfactant concentration at relatively low concentration and then levelled off above some optimum concentration. 4. The removal of particulate soil increased with increasing pH and mechanical force. 5. Effect of electrolyte on the particulate soil removal was depended on the concentration of the surfactant. At low concentration of surfactant, addition of electrolytes improved soil removal but above the some concentration no effect was observed. At high concentration of surfactant, Vie., $0.6\%$ , the maximum washing effect is reached without added electrolyte. These result indicate that added electrolyte only influence the adsorption of surfactant on the soil and fiber 6. Fatty acid content in the soil did not influence on particulate soil removal without regard to surfactants.

  • PDF

The Effect of Particle Size on the Detergency of Particulate Soil (고형오구 입자크기가 고형오구의 세척성에 미치는 영향)

  • Mun, Mi-Hwa;Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.4
    • /
    • pp.653-662
    • /
    • 2010
  • This study investigates the effect of particle size on the detergency of particulate soil using an $\alpha-Fe_2O_3$ particle as the model. Monodispersed spherical $\alpha-Fe_2O_3$ particles were prepared by the hydrothermal aging of an acidic $FeCl_3$ and HCl solution. The $\xi$-potential of PET fiber was measured by the streaming potential method. The potential energy of interaction between the particle and fiber was calculated using the heterocoagulation theory for a sphere-plate model. The $\xi$-potential of PET fiber and potential energy of interaction between particles and fiber increased with a decreasing particle size in a DBS solution. However, in the nonionic surfactant solution, the $\xi$-potential signs of PET fiber and $\alpha-Fe_2O_3$ particles were (-) and (+), respectively; there was no repulsive power between the particles and substrate. The adhesion of particles to the fabric increased with increasing particle size in the anionic surfactant solution and their removal from the fabric increased with a decreasing particle size. The adhesion of particles to the fabric and their removal from the fabric was biphasic with a maximum and minimum at 0.1% concentration of the surfactant solution. In the nonionic surfactant solution the adhesion of particles to fabric and their removal from the fabric were greater than the ones in the anionic surfactant DBS solution.

Cleaning Method for Selective Removal of Stains from Historic Textiles and Stains Change by Long Period Storage -Focused on Blood Soil- (복식유물 오구의 선택적 제거를 위한 세척방법 및 장기간 보관에 따른 오구 변화 -혈액오구를 중심으로-)

  • Roh, Eui Kyung;Ryu, Hyo-Seon;Chae, Jeongmin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.2
    • /
    • pp.341-351
    • /
    • 2017
  • This study evaluates a cleaning method to maintain and minimize the change of blood soil for the selective removal of stains from textiles with historical significance and special meaning. Cotton and silk fabrics were soiled with blood, aged artificially and then washed by wet cleaning or dry cleaning (water, nonionic surfactant; Triton, natural surfactant; saponin, organic solvent; n-Decane). The washed fabrics were stored at room temperature for four years. The change of the blood soil was evaluated by SEM, weight, thickness, and color differences. Subsequently, the shape and the amount of blood adsorption on the fabric varied depending on fiber type and fabric structure characteristics; in addition, long term storage affected changes to blood soil. It was difficult to remove artificially aged blood soil from fabrics by wet or dry cleaning. However, the changes of the blood soil by these cleanings can be explained by the changes on SEM, weight, thickness and fabric color. The changes (especially color) showed over time. Wet cleaning showed that the changes of those factors were slightly lower than those by dry cleaning.