• Title/Summary/Keyword: Remote-Sensing

Search Result 5,816, Processing Time 0.033 seconds

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF

Land-Cover Change Detection of Western DMZ and Vicinity using Spectral Mixture Analysis of Landsat Imagery (선형분광혼합화소분석을 이용한 서부지역 DMZ의 토지피복 변화 탐지)

  • Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.158-167
    • /
    • 2006
  • The object of this study is to detect of land-cover change in western DMZ and vicinity. This was performed as a basic study to construct a decision support system for the conservation or a sustainable development of the DMZ and Vicinity near future. DMZ is an is 4km wide and 250km long and it's one of the most highly fortified boundaries in the world and also a unique thin green line. Environmentalists want to declare the DMZ as a natural reserve and a biodiversity zone, but nowadays through the strengthening of the inter-Korean economic cooperation, some developers are trying to construct a new-town or an industrial complex inside of the DMZ. This study investigates the current environmental conditions, especially deforestation of the western DMZ adopting remote sensing and GIS techniques. The Land-covers were identified through the linear spectvral mixture analysis(LSMA) which was used to handle the spectral mixture problem of low spatial resolution imagery of Landsat TM and ETM+ imagery. To analyze quantitative and spatial change of vegetation-cover in western DMZ, GIS overlay method was used. In LSMA, to develop high-quality fraction images, three endmembers of green vegetation(GV), soil, water were driven from pure features in the imagery. Through 15 years, from 1987 to 2002, forest of western DMZ and vicinity was devastated and changed to urban, farmland or barren land. Northern part of western DMZ and vicinity was more deforested than that of southern part. ($52.37km^2$ of North Korean forest and $39.04km^2$ of South Korean were change to other land-covers.) In case of North Korean part, forest changed to barren land and farmland and in South Korean part, forest changed to farmland and urban area. Especially, In North Korean part of DMZ and vicinity, $56.15km^2$ of farmland changed to barren land through 15 years, which showed the failure of the 'Darakbat' (terrace filed) project which is one of food increase projects in North Korea.

  • PDF

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

Analysis of Land Cover Classification and Pattern Using Remote Sensing and Spatial Statistical Method - Focusing on the DMZ Region in Gangwon-Do - (원격탐사와 공간통계 기법을 이용한 토지피복 분류 및 패턴 분석 - 강원도 DMZ일원을 대상으로 -)

  • NA, Hyun-Sup;PARK, Jeong-Mook;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.100-118
    • /
    • 2015
  • This study established a land-cover classification method on objects using satellite images, and figured out distributional patterns of land cover according to categories through spatial statistics techniques. Object-based classification generated each land cover classification map by spectral information, texture information, and the combination of the two. Through assessment of accuracy, we selected optimum land cover classification map. Also, to figure out spatial distribution pattern of land cover according to categories, we analyzed hot spots and quantified them. Optimal weight for an object-based classification has been selected as the Scale 52, Shape 0.4, Color 0.6, Compactness 0.5, Smoothness 0.5. In case of using the combination of spectral information and texture information, the land cover classification map showed the best overall classification accuracy. Particularly in case of dry fields, protected cultivation, and bare lands, the accuracy has increased about 12 percent more than when we used only spectral information. Forest, paddy fields, transportation facilities, grasslands, dry fields, bare lands, buildings, water and protected cultivation in order of the higher area ratio of DMZ according to categories. Particularly, dry field sand transportation facilities in Yanggu occurred mainly in north areas of the civilian control line. dry fields in Cheorwon, forest and transportation facilities in Inje fulfilled actively in south areas of the civilian control line. In case of distributional patterns according to categories, hot spot of paddy fields, dry fields and protected cultivation, which is related to agriculture, was distributed intensively in plains of Yanggu and in basin areas of Cheorwon. Hot spot areas of bare lands, waters, buildings and roads have similar distribution patterns with hot spot areas related to agriculture, while hot spot areas of bare lands, water, buildings and roads have different distributional patterns with hot spot areas of forest and grasslands.

Rural Systems Visioneering: Paradigm Shift from Flux Measurement to Sustainability Science (지역시스템 비저니어링: 플럭스 관측에서 지속가능성과학으로의 패러다임 전환)

  • Kim, Joon;Kang, Minseok;Oki, Taikan;Park, Eun Woo;Ichii, Kazuhito;Indrawati, Yohana Maria;Cho, Sungsik;Moon, Jihyun;Yoo, Wan Chol;Rhee, Jiyoung;Rhee, Herb;Njau, Karoli;Ahn, Sunghoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.101-116
    • /
    • 2018
  • Sustainability science is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists, practitioners and stakeholders from different disciplines and interests, but also the paradigm shift from deterministic and reductionist approaches to the old basic. Ecological-societal systems (ESS) are co-evolving complex systems having many interacting parts (or agents) whose random interactions at local scale give rise to spontaneous emerging order at global scale (i.e., self-organization). Here, the flows of energy, matter and information between the systems and their surroundings play a key role. We introduce a conceptual framework for such continually morphing dynamical systems, i.e. self-organizing hierarchical open systems (SOHOs). To understand the structure and functionality of SOHOs, we revisit the two fundamental laws of physics. Re-interpretation of these principles helps understand the destiny and better path toward sustainability, and how to reconcile ecosystem integrity with societal vision and value. We then integrate the so-called visioneering (V) framework with that of SOHOs as feedback/feedforward loops so that 'a nudged self-organization' may guide systems' agents to work together toward sustainable ESS. Finally, example is given with newly endorsed Sustainable Development Goals (SDG) Lab (i.e., 'Rural systems visioneering') by Future Earth, which is now underway in rural villages in Tanzania.

Fog Detection over the Korean Peninsula Derived from Satellite Observations of Polar-orbit (MODIS) and Geostationary (GOES-9) (극궤도(MODIS) 및 정지궤도(GOES-9) 위성 관측을 이용한 한반도에서의 안개 탐지)

  • Yoo, Jung-Moon;Yun, Mi-Young;Jeong, Myeong-Jae;Ahn, Myoung-Hwan
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.450-463
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas within the Korean Peninsula have been derived from the data of polar-orbit Aqua/Terra MODIS and geostationary GOES-9 during a two years. The values are obtained from reflectance at $0.65{\mu}m\;(R_{0.65})$ and the difference in brightness temperature between $3.7{\mu}m\;and\;11{\mu}m\;(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following four parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul metropolitan area: brightness temperature at $3.7{\mu}m$, the temperature at $11{\mu}m,\;the\;T_{3.7-11}$ for day and night, and the $R_{0.65}$ for daytime. The parameters show significant correlations (r<0.5) in spatial distribution between the two kinds of satellites. The discrepancy between their infrared thresholds is mainly due to the disagreement in their spatial resolutions and spectral bands, particularly at $3.7{\mu}m$. Fog detection from GOES-9 over the nine airport areas except the Cheongju airport has revealed accuracy of 60% in the daytime and 70% in the nighttime, based on statistical verification. The accuracy decreases in foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog. The sensitivity of radiance and reflectance with wavelength has been analyzed in numerical experiments with respect to various meteorological conditions to investigate optical characteristics of the three channels.

Characterizing the Spatial Distribution of Oak Wilt Disease Using Remote Sensing Data (원격탐사자료를 이용한 참나무시들음병 피해목의 공간분포특성 분석)

  • Cha, Sungeun;Lee, Woo-Kyun;Kim, Moonil;Lee, Sle-Gee;Jo, Hyun-Woo;Choi, Won-Il
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.310-319
    • /
    • 2017
  • This study categorized the damaged trees by Supervised Classification using time-series-aerial photographs of Bukhan, Cheonggae and Suri mountains because oak wilt disease seemed to be concentrated in the metropolitan regions. In order to analyze the spatial characteristics of the damaged areas, the geographical characteristics such as elevation and slope were statistically analyzed to confirm their strong correlation. Based on the results from the statistical analysis of Moran's I, we have retrieved the following: (i) the value of Moran's I in Bukhan mountain is estimated to be 0.25, 0.32, and 0.24 in 2009, 2010 and 2012, respectively. (ii) the value of Moran's I in Cheonggye mountain estimated to be 0.26, 0.32 and 0.22 in 2010, 2012 and 2014, respectively and (iii) the value of Moran's I in Suri mountain estimated to be 0.42 and 0.42 in 2012 and 2014. respectively. These numbers suggest that the damaged trees are distributed in clusters. In addition, we conducted hotspot analysis to identify how the damaged tree clusters shift over time and we were able to verify that hotspots move in time series. According to our research outcome from the analysis of the entire hotspot areas (z-score>1.65), there were 80 percent probability of oak wilt disease occurring in the broadleaf or mixed-stand forests with elevation of 200~400 m and slope of 20~40 degrees. This result indicates that oak wilt disease hotspots can occur or shift into areas with the above geographical features or forest conditions. Therefore, this research outcome can be used as a basic resource when predicting the oak wilt disease spread-patterns, and it can also prevent disease and insect pest related harms to assist the policy makers to better implement the necessary solutions.

Preliminary Study on the Application of Remote Sensing to Mineral Exploration Using Landsat and ASTER Data (Landsat과 ASTER 위성영상 자료를 이용한 광물자원탐사로의 적용 가능성을 위한 예비연구)

  • Lee, Hong-Jin;Park, Maeng-Eon;Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.467-475
    • /
    • 2010
  • The Landsat and ASTER data have been used in mineralogical and lithological studies, and they have also proved to be useful tool in the initial steps for mineral exploration throughout Nevada mining district, US. Huge pyrophyllite quarry mines, including Jungang, Samsung, Kyeongju, and Naenam located in the southeastern part of Gyeongsang Basin. The geology of study area consists mainly of Cretaceous volcanic rocks, which belong into Cretaceous Hayang and Jindong Group. They were intruded by Bulgugsa granites, so called Sannae-Eonyang granites. To extraction of Ratio model for pyrophyllite deposits, tuffaceous rock and pyrophyllite ores from the Jungang mine used in reflectance spectral analysis and these results were re-sampled to Landsat and ASTER bandpass. As a result of these processes, the pyrophyllite ores spectral features show strong reflectance at band 5, whereas strong absorption at band 7 in Landsat data. In the ASTER data, the pyrophyllite ores spectral features show strong absorption at band 5 and 8, whereas strong reflectance at band 4 and 7. Based on these spectral features, as a result of application of $Py_{Landsat}$ model to hydrothermal alteration zone and other exposed sites, the DN values of two different areas are 1.94 and 1.19 to 1.49, respectively. The differences values between pyrophyllite deposits and concrete-barren area are 0.472 and 0.399 for $Py_{ASTER}$ model, 0.452 and 0.371 for OHIb model, 0.365 and 0.311 for PAK model, respectively. Thus, $Py_{ASTER}$ and $Py_{Landsat}$ model proposed from this study proved to be more useful tool for the extraction of pyrophyllite deposits relative to previous models.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF