• Title/Summary/Keyword: Remote Sensing Imagery

Search Result 827, Processing Time 0.017 seconds

Analysis of Geometric and Spatial Image Quality of KOMPSAT-3A Imagery in Comparison with KOMPSAT-3 Imagery

  • Erdenebaatar, Nyamjargal;Kim, Jaein;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This study investigates the geometric and spatial image quality analysis of KOMPSAT-3A stereo pair. KOMPSAT-3A is, the latest satellite of KOMPSAT family, a Korean earth observation satellite operating in optical bands. A KOMPSAT-3A stereo pair was taken on 23 November, 2015 with 0.55 m ground sampling distance over Terrassa area of Spain. The convergence angle of KOMPSAT-3A stereo pair was estimated as $58.68^{\circ}$. The investigation was assessed through the evaluation of the geopositioning analysis, image quality estimation and the accuracy of automatic Digital Surface Model (DSM) generation and compared with those of KOMPSAT-3 stereo pair with the convergence angle of $44.80^{\circ}$ over the same area. First, geopositioning accuracy was tested with initial rational polynomial coefficients (RPCs) and after compensating the biases of the initial RPCs by manually collected ground control points. Then, regarding image quality, relative edge response was estimated for manually selected points visible from two stereo pairs. Both of the initial and bias-compensated positioning accuracy and the quality assessment result expressed that KOMPSAT-3A images showed higher performance than those of KOMPSAT-3 images. Finally, the accuracy of DSMs generated from KOMPSAT-3A and KOMPSAT-3 stereo pairs were examined with respect to the reference LiDAR-derived DSM. The various DSMs were generated over the whole coverage of individual stereo pairs with different grid spacing and over three types of terrain; flat, mountainous and urban area. Root mean square errors of DSM from KOMPSAT-3A pair were larger than those for KOMPSAT-3. This seems due to larger convergence angle of the KOMPSAT-3A stereo pair.

Estimation of Carbon Absorption Distribution by Land Use Changes using RS/GIS Method in Green Land (RS/GIS를 이용한 토지이용변화에 의한 녹지의 이산화탄소 (CO2) 흡착량 분포 추정)

  • Na, Sang-Il;Park, Jong-Hwa;Park, Jin-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • Quantification of carbon absorption and understanding the human induced land use changes (LUC) forms one of the major study with respect to global climatic changes. An attempt study has been made to quantify the carbon absorption by LUC through remote sensing technology. The Landsat imagery four time periods was classified with the hybrid classification method in order to quantify carbon absorption by LUC. Thereafter, for estimating the amount of carbon absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated with the crown width extracted from digital forest cover type map. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC guideline, was used to convert the stand biomass into the amount of carbon absorption. Total carbon absorption has been modeled by taking areal estimates of LUC of four time periods and carbon factors for land use type and standing biomass. Results of this study, through LUC suggests that over a period of construction, 7.10 % of forest and 9.43 % of barren were converted into urban. In the conversion process, there has been a loss of 6.66 t/ha/y (7.94 %) of carbon absorption from the study area.

Landslide Stability Analysis and Prediction Modeling with Landslide Occurrences on KOMPSAT EOC Imagery

  • Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Landslide prediction modeling has been regarded as one of the important environmental applications in GIS. While, landslide stability in a certain area as collateral process for prediction modeling can be characterized by DEM-based hydrological features such as flow-direction, flow-accumulation, flow-length, wetness index, and so forth. In this study, Slope-Area plot methodology followed by stability index mapping with these hydrological variables is firstly performed for stability analysis with actual landslide occurrences at Boeun area, Korea, and then Landslide prediction modeling based on likelihood ratio model for landslide potential mapping is carried out; in addition, KOMPSAT EOC imagery is used to detect the locations and scalped scale of Landslide occurrences. These two tasks are independently processed for preparation of unbiased criteria, and then results of those are qualitatively compared. As results of this case study, land stability analysis based on DEM-based hydrological variables directly reflects terrain characteristics; however, the results in the form of land stability map by landslide prediction model are not fully matched with those of hydrologic landslide analysis due to the heuristic scheme based on location of existed landslide occurrences within prediction approach, especially zones of not-investigated occurrences. Therefore, it is expected that the resets on the space-robustness of landslide prediction models in conjunction with DEM-based landslide stability analysis can be effectively utilized to search out unrevealed or hidden landslide occurrences.

Epipolar Geometry for Gupta and Hartley Sensor Model without the Ephemeris Data (위성 궤도 정보를 사용하지 않는 Gupta와 Hartley 센서모델의 에피폴라 기하모델)

  • 이해연;박원규
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.233-242
    • /
    • 2002
  • In this paper, an epipolar model without the ephemeris data is proposed. Also, various epipolar models such as the epipolar geometry of perspective sensor, the one proposed by Gupta and Hartley and the one based on the Orun and Natarajan's sensor model are reviewed and their accuracy are quantitatively analyzed using devised measure. Modeling data from ground control points, ground control points, ephemeris data and independent checking points are selected on SPOT over Taejon and Boryung area and KOMPSAT over Taejon and Nonsan area. Based on the results, the epipolar model of perspective sensor and the one by Gupta and Hartley have the average accuracy within 1 pixel but show high errors in several checking points. The proposed epipolarity model provides better results than that of perspective sensor and by Gupta and Hartley. Also, it shows the accuracy similar to the one based on Orun and Natarajan's sensor model.

Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification (다단계 계층군집 영상분류법을 이용한 토지 피복 분석)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.135-147
    • /
    • 2003
  • This study used the multistage hierarchical clustering image classification to analyze the satellite images for the land-cover types of an area in the Korean peninsula. The multistage algorithm consists of two stages. The first stage performs region-growing segmentation by employing a hierarchical clustering procedure with the restriction that pixels in a cluster must be spatially contiguous, and finally the whole image space is segmented into sub-regions where adjacent regions have different physical properties. Without spatial constraints for merging, the second stage clusters the segments resulting from the previous stage. The image classification of hierarchical clustering, which merges step-by step two small groups into one large one based on the hierarchical structure of digital imagery, generates a hierarchical tree of the relation between the classified regions. The experimental results show that the hierarchical tree has the detailed information on the hierarchical structure of land-use and more detailed spectral information is required for the correct analysis of land-cover types.

Despeckling and Classification of High Resolution SAR Imagery (고해상도 SAR 영상 Speckle 제거 및 분류)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 2009
  • Lee(2009) proposed the boundary-adaptive despeckling method using a Bayesian model which is based on the lognormal distribution for image intensity and a Markov random field(MRF) for image texture. This method employs the Point-Jacobian iteration to obtain a maximum a posteriori(MAP) estimate of despeckled imagery. The boundary-adaptive algorithm is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The boundary-adaptive scheme was comprehensively evaluated using simulation data and the effectiveness of boundary adaption was proved in Lee(2009). This study, as an extension of Lee(2009), has suggested a modified iteration algorithm of MAP estimation to enhance computational efficiency and to combine classification. The experiment of simulation data shows that the boundary-adaption results in yielding clear boundary as well as reducing error in classification. The boundary-adaptive scheme has also been applied to high resolution Terra-SAR data acquired from the west coast of Youngjong-do, and the results imply that it can improve analytical accuracy in SAR application.

Dempster-Shafer Fusion of Multisensor Imagery Using Gaussian Mass Function (Gaussian분포의 질량함수를 사용하는 Dempster-Shafer영상융합)

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.419-425
    • /
    • 2004
  • This study has proposed a data fusion method based on the Dempster-Shafer evidence theory The Dempster-Shafer fusion uses mass functions obtained under the assumption of class-independent Gaussian assumption. In the Dempster-Shafer approach, uncertainty is represented by 'belief interval' equal to the difference between the values of 'belief' function and 'plausibility' function which measure imprecision and uncertainty By utilizing the Dempster-Shafer scheme to fuse the data from multiple sensors, the results of classification can be improved. It can make the users consider the regions with mixed classes in a training process. In most practices, it is hard to find the regions with a pure class. In this study, the proposed method has applied to the KOMPSAT-EOC panchromatic image and LANDSAT ETM+ NDVI data acquired over Yongin/Nuengpyung. area of Kyunggi-do. The results show that it has potential of effective data fusion for multiple sensor imagery.

Automated Vinyl Green House Identification Method Using Spatial Pattern in High Spatial Resolution Imagery (공간패턴을 이용한 자동 비닐하우스 추출방법)

  • Lee, Jong-Yeol;Kim, Byoung-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • This paper introduces a novel approach for automated mapping of a map feature that is vinyl green house in high spatial resolution imagery Some map features have their unique spatial patterns. These patterns are normally detected in high spatial resolution remotely sensed data by human recognition system. When spatial patterns can be applied to map feature identification, it will improve image classification accuracy and will be contributed a lot to feature identification. In this study, an automated feature identification approach using spatial aucorrelation is developed, specifically for the vinyl green house that has distinctive spatial pattern in its array. The algorithm aimed to develop the method without any human intervention such as digitizing. The method can investigate the characteristics of repeated spatial pattern of vinyl green house. The repeated spatial pattern comes from the orderly array of vinyl green house. For this, object-based approaches are essential because the pattern is recognized when the shapes that are consists of the groups of pixels are involved. The experimental result shows very effective vinyl house extraction. The targeted three vinyl green houses were exactly identified in the IKONOS image for a part of Jeju area.

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

KOMPSAT Data Processing System: An Overview and Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.357-365
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the KOrea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in late 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As a part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed, archived, and provided. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.