• Title/Summary/Keyword: Remote Sensing Data

Search Result 3,519, Processing Time 0.04 seconds

A STUDY OF ESTIMATION GROUND SURFACE TEMPERATURE BY TIME-SHIFT PROCESSING

  • Yano, Koji;KAJIWARA, Koji;HONDA, Yoshiaki;Moriyama, Masao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.798-800
    • /
    • 2003
  • The time shift processing of ground measured surface temperature with the meteorological variables has no evaluated function. We introduce new evaluating function. To use this evaluating function, the algorithm of time-shift processing will be able to be reliable and get error-bar for all moving measured point's data. We will finally obtain the area averaged surface temperature by land observation.

  • PDF

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

Analysis on Urban Sprawl and Landcover Change Using TM, ETM+ and GIS

  • Xiao, Jieying;Ryutaro, Tateishi;Shen, Yanjun;Ge, Jingfeng;Liang, Yanqing;Chang, Chunping
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.978-980
    • /
    • 2003
  • This study explores the temporal and spatial features near 67years (1934 ?2001) and landcover change in last 14 years (1987-2001) in Shijiazhuang, China, based on 67-year time series data edited from historical maps, TM and ETM+ imageries by integrating GIS and remote sensing method. An index named Annual Growth Rate (AGR) is used to analyze the spatial features of urban sprawl, and Maximum Likelihood classification method is utilized to detect the land cover types change. At last, the relationship between urbanization and factors is analyzed.

  • PDF

Study of Airborne Remote Sensing for Water Quality Monitoring (수질오염 감시에의 활용을 위한 항공원격탐사의 적용연구)

  • 김광은;이태섭
    • Spatial Information Research
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1994
  • Recently, as remote sensing is widely used for environmental monitoring, more precise quantitative analysis of remote sensing data is required. In this paper, themat ic maps of water qual i ty factors such as chlorophyll-a, transparency, and suspended sediments were presented from the high resoltion airborne remote sensing data of HapCheon Dam. Though it was difficult to explicitly correlate remote sensing data with water quality factors due to the insufficient number of ground teuth data, the presented water quality maps showed very well the overall spatial distribution of water pollution in the Lake.

  • PDF

ESTIMATION OF IOP FROM INVERSION OF REMOTE SENSING REFLECTANCE MODEL USING IN-SITU OCEAN OPTICAL DATA IN THE SEAWATER AROUND THE KOREA PENINSULA

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.224-227
    • /
    • 2006
  • For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.

  • PDF

Validation of MODIS fire product over Sumatra and Borneo using High Resolution SPOT Imagery

  • LIEW, Soo-Chin;SHEN, Chaomin;LOW, John;Lim, Agnes;KWOH, Leong-Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1149-1151
    • /
    • 2003
  • We performed a validation study of the MODIS active fire detection algorithm using high resolution SPOT image as the reference data set. Fire with visible smoke plumes are detected in the SPOT scenes, while the hotspots in MODIS data are detected using NASA's new version 4 fire detection algorithm. The detection performance is characterized by the commission error rate (false alarms) and the omission error rate (undetected fires). In the Sumatra and Kalimantan study area, the commission rate and the omission rate are 27% and 34% respectively. False alarms are probably due to recently burnt areas with warm surfaces. False negative detection occur where there are long smoke plumes and where fires occur in densely vegetated areas.

  • PDF

A STORAGE AND RETRIEVAL SYSTEM FOR LARGE COLLECTIONS OF REMOTE SENSING IMAGES

  • Kwak Nohyun;Chung Chin-Wan;Park Ho-hyun;Lee Seok-Lyong;Kim Sang-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.763-765
    • /
    • 2005
  • In the area of remote sensing, an immense number of images are continuously generated by various remote sensing systems. These images must then be managed by a database system efficient storage and retrieval. There are many types of image database systems, among which the content-based image retrieval (CBIR) system is the most advanced. CBIR utilizes the metadata of images including the feature data for indexing and searching images. Therefore, the performance of image retrieval is significantly affected by the storage method of the image metadata. There are many features of images such as color, texture, and shape. We mainly consider the shape feature because shape can be identified in any remote sensing while color does not always necessarily appear in some remote sensing. In this paper, we propose a metadata representation and storage method for image search based on shape features. First, we extend MPEG-7 to describe the shape features which are not defined in the MPEG-7 standard. Second, we design a storage schema for storing images and their metadata in a relational database system. Then, we propose an efficient storage method for managing the shape feature data using a Wavelet technique. Finally, we provide the performance results of our proposed storage method.

  • PDF

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Geostatistical Fusion of Spectral and Spatial Information in Remote Sensing Data Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.399-401
    • /
    • 2003
  • This paper presents a geostatistical contextual classifier for the classification of remote sensing data. To obtain accurate spatial/contextual information, a simple indicator kriging algorithm with local means that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is applied. To illustrate the proposed scheme, supervised classification of multi-sensor remote sensing data is carried out. Analysis of the results indicates that the proposed method improved the classification accuracy, compared to the method based on the spectral information only.

  • PDF