• 제목/요약/키워드: Remote Plasma

검색결과 142건 처리시간 0.214초

레이저 유도 플라즈마 분광 기법을 이용한 용접 연강에서의 비접촉 강도 측정과 해석 (Non-contact Measurement and Analysis of Surface Hardness on Welding Steel using Laser-induced Breakdown Spectroscopy)

  • 김주한;고찬솔
    • 한국정밀공학회지
    • /
    • 제31권2호
    • /
    • pp.141-148
    • /
    • 2014
  • In this work, effects of plasma on different hardness of welding steel using laser-induced breakdown spectroscopy were investigated. The ratios of ionic to atomic spectrum peaks were related to its material hardness. The major spectrum peak (Fe) and minor spectrum peak (Mn) were considered as monitoring elements. The stronger repulse plasma was generated, the harder material it was. The ratios of ionic to atomic spectrum peaks increased with respect to the material hardness as well. The correlation of minor spectrum peaks was stronger than that of major spectrum peaks. However, the major spectrum peaks indicated a similar trend, which could be used to estimate the hardness, too. Based on this result, the method could be used as a non-contact remote measurement of material properties.

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • 강태성;구자현;홍진표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF

Atmospheric Pressure Plasma를 이용한 Oxide Thin Film Transistor의 특성 개선 연구

  • 문무겸;김가영;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.582-582
    • /
    • 2013
  • Oxide TFT (thin film transistor) active channel layer에 대한 저온 열처리 공정은 투명하고 flexibility을 기반으로하는 display 산업과 AMOLED (active matrix organic light emitting diode) 분야 등 다양한 분야에서 필요로 하는 기술로서 많은 연구가 이루어지고 있다. 과거 active layer는 ALD (atomic layer deposition), CVD (chemical vapor deposition), pulse laser deposition, radio frequency-dc (RF-dc) magnetron sputtering 등과 같은 고가의 진공 장비를 이용하여 증착 되어져 왔으나 현재에는 진공 장비 없이 spin-coating 후 열처리 하는 저가의 공정이 주로 연구되어 지고 있다. Flexible 기판들은 일반적인 OTFT (oxide thin films Transistor)에 적용되는 열처리 온도로 공정 진행시 열에 의한 기판의 손상이 발생한다. Flexible substrate의 열에 의한 기판 손상을 막기 위해 저온 열처리 공정이 연구되고 있지만 기존 열처리와 비교하여 소자의 특성 저하가 동반 되었다. 본 연구에서는 Si 기판위에 SiO2 (100)를 절연층으로 증착하고 그 위에 IZO (indium zinc oxide) solution을 spin-coating 한뒤 $250^{\circ}C$ 이하의 온도에서 열처리하였다. 저온 공정으로 인하여 소자의 특성 저하가 동반 되었으므로 소자의 저하된 특성 복원하고자 post-treatment로 고가의 진공장비가 필요 없고 roll-to roll system 적용이 수월한 remote-type의 APP (atmospheric pressure plasma) 처리를 하였다. Post-treatment로 APP를 이용하여 $250^{\circ}C$ 이하에서 소자에 적용 가능한 on/off ratio를 얻을 수 있었다.

  • PDF

Reduction of surface roughness during high speed thinning of silicon wafer

  • Heo, W.;Ahn, J.H.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.392-392
    • /
    • 2010
  • In this study, high-speed chemical dry thinning process of Si wafer and evolution of surface roughness were investigated. Direct injection of NO gas into the reactor during the supply of F radicals from $NF_3$ remote plasmas was very effective in increasing the Si thinning rate due to the NO-induced enhancement of surface reaction but thinned Si surface became roughened significantly. Addition of Ar gas, together with NO gas, decreased root mean square (RMS) surface roughness of thinned Si wafer significantly. The process regime for the thinning rate enhancement with reduced surface roughness was extended at higher Ar gas flow rate. Si wafer thinning rate as high as $22.8\;{\mu}m/min$ and root-mean-squared (RMS) surface roughness as small as 0.75 nm could be obtained. It is expected that high-speed chemical dry thinning process has possibility of application to ultra-thin Si wafer thinning with no mechanical damage.

  • PDF

대기압 플라즈마를 이용한 frequency 변화에 따른 SiOx 박막 특성 변화

  • 김가영;박재범;염근영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.336-337
    • /
    • 2012
  • 본 연구에서는 HMDS (400sccm)/$O_2$(20slm)/He(5slm)/Ar(10slm)의 가스를 사용하여 remote-type discharge와 direct-type discharge로 구성된 double discharge system을 이용하여 SiOx 박막을 증착시켰다. 특히, 본 연구는 frequency의 변화가 SiOx 박막의 특성과 plasma특성에 어떠한 영향을 미치는지 조사하였다.

  • PDF

원격 플라즈마 원자층 증착법을 이용한 Al2O3/GaN MIS 구조의 제작 및 전기적 특성 (Fabrication and Electrical Properties of Al2O3/GaN MIS Structures using Remote Plasma Atomic Layer Deposition)

  • 윤형선;김현준;이우석;곽노원;김가람;김광호
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.350-354
    • /
    • 2009
  • $Al_{2}O_{3}$ thin films were deposited on GaN(0001) by using a Remote Plasma Atomic Layer Deposition(RPALD) technique with a trimethylaluminum(TMA) precursor and oxygen radicals in the temperature range of $25{\sim}500^{\circ}C$. The growth rate per cycle was varied with the substrate temperature from $1.8{\AA}$/cycle at $25^{\circ}C$ to $0.8{\AA}$/cycle at $500^{\circ}C$. The chemical structure of the $Al_{2}O_{3}$ thin films was studied using X-ray photoelectron spectroscopy(XPS). The electrical properties of $Al_{2}O_{3}$/GaN Metal-Insulator-Semiconductor (MIS) capacitor grown at a $300^{\circ}C$ process temperature were excellent, a low electrical leakage current density(${\sim}10^{-10}A/cm^2$ at 1 MV) at room temperature and a high dielectric constant of about 7.2 with a thinner oxide thickness of 12 nm. The interface trap density($D_{it}$) was estimated using a high-frequency C-V method measured at $300^{\circ}C$. These results show that the RPALD technique is an excellent choice for depositing high-quality $Al_{2}O_{3}$ as a Sate dielectric in GaN-based devices.

스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구 (A Study on High Speed Laser Welding by using Scanner and Industrial Robot)

  • 강희신;서정;김종수;김정오;조택동
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF