• Title/Summary/Keyword: Remeshing Technique

Search Result 42, Processing Time 0.022 seconds

A Three-Dimensional Finite Element Analysis of Hot Extrusion through Square Dies by automatic remeshing Technique with modular concept (자동 단위체 격자재구성법을 이용한 열간 평금형압출의 3차원 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.64-73
    • /
    • 1994
  • An updated Lagrangian finite element analysis with automatic remeshing scheme is applied to the three-dimensional hot extrusion through landless square dies. In the remeshing procedure, it is very difficult that the meshes are generated automatically with consideration of physical characteristics. In the presented study, the mesh generation is accomplished by modular concept. The generated meshes by modular concept have advantages, especially for three-dimensional problems, such as economized computational time and consideration of physical characteristic. In the problem, orifice shapes of square die are divided into two for the extrusion of solid sections. The orifice adaptive modules are developed for each type and the numerical examples are carried out for each type.

  • PDF

Non-steady state finite element analysis of nonisothermal hot container extrusion through conical dies (원추형금형을 통한 비 등온 열간 콘테이너 압출의 비정상상태 유한요소해석)

  • Kang, Yean-Sick;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.30-39
    • /
    • 1993
  • The study is concerned with the thermo-viscoplastic finite element analysis of nonisothermal hot container extrusion through conical dies. The problem is treated as a non-steady state incorporating the nonisothermal heat transfer analysis. The analysis of temperature distribution includes heat transfer though the boundary surface including conduction, convection and radiation. The analysis of heat transfer is decoupled with the analysis of deformation and the material interaction is considered through iteration procedure. The effect of important process parameters including die angle and extrusion ratio in the process is investigated. Due to the geometric feature for the container extrusion through conical dies, automatic remeshing is mandatory. Automatic remeshing is achieved by introducing the modular remeshing technique.

  • PDF

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

A New Remeshing Technique of Tetrahedral Elements by Redistribution of Nodes in Subdomains and its Application to the Finite Element Analysis (영역별 절점 재분포를 통한 사면체 격자 재구성 방법 및 유한요소해석에의 적용)

  • Hong J.T.;Lee S.R.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.607-610
    • /
    • 2005
  • A remeshing algorithm using tetrahedral elements has been developed, which is adapted to the mesh density map constructed by a posteriori error estimation. In the finite element analyses of metal forging processes, numerical error increases as deformation proceeds due to severe distortion of elements. In order to reduce the numerical error, the desired mesh sizes in each region of the workpiece are calculated by a posteriori error estimation and the density map is constructed. Piecewise density functions are then constructed with the radial basis function in order to interpolate the discrete data of the density map. The sample mesh is constructed based on the point insertion technique which is adapted to the density function and the mesh size is controlled by moving and deleting nodes to obtain optimal distribution according to the mesh density function and the quality optimization function as well. After finishing the redistribution process of nodes, a tetrahedral mesh is constructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

  • PDF

Intelligent Simulation of Three-Dimensional Forging Process (삼차원 단조공정의 지능적 시뮬레이션)

  • Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.155-159
    • /
    • 2007
  • We conduct intelligent simulation of three-dimensional forging processes in this paper. A new remeshing technique is employed for this purpose. Not only the state variables including strain and strain-rate but also the geometrical features including die-material contact conditions and the characteristic lines or surfaces are taken into account during remeshing. The presented approach is applied to the Baden-Baden benchmark test example and its influence on the simulated results is discussed particularly in terms of the deformed shape with emphasis on the characteristic line.

  • PDF

Three-dimensional Forging Simulation with Tetrahedral Elements and Hexahedral Elements and their Comparison with Experiments (사면체요소와 육면체요소를 이용한 삼차원 단조 시뮬레이션 결과의 비교 및 검증)

  • Lee, Min-Cheol;Baek, Jong-Pa;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1637-1641
    • /
    • 2007
  • In this paper, we simulate a rotor pole cold forging process by a forging simulator with both tetrahedral and hexahedral element capabilities and compare the predictions obtained by the two approaches with the experiments. Hexahedral element capability runs manually while tetrahedral element capability runs automatically with help of an intelligent remeshing technique. It is shown that the tetrahedral element capability can give quite accurate solution if assisted by the intelligent remeshing technique even though the tetrahedral element itself is not theoretically and numerically clear.

  • PDF

Adaptive Delaunay Mesh Generation Technique Based on a Posteriori Error Estimation and a Node Density Map (오차 예측과 격자밀도 지도를 이용한 적응 Delaunay 격자생성방법)

  • 홍진태;이석렬;박철현;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.334-341
    • /
    • 2004
  • In this study, a remeshing algorithm adapted to the mesh density map using the Delaunay mesh generation method is developed. In the finite element simulation of forging process, the numerical error increases as the process goes on because of discrete property of the finite elements and distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical error will be highly increased. However, it is not desirable to use a uniformly fine mesh in the whole domain. Therefore, it is necessary to reduce the analysis error by constructing locally refined mesh at the region where the error is concentrated such as at the die corner. In this paper, the point insertion algorithm is used and the mesh size is controlled by using a mesh density map constructed with a posteriori error estimation. An optimized smoothing technique is adopted to have smooth distribution of the mesh and improve the mesh element quality.

Two-Dimensional Adaptive Mesh Generation Algorithm and its Application with Higher-Order Compressible Flow Solver

  • Phongthanapanich, Sutthisak;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2190-2203
    • /
    • 2004
  • A combined procedure for two-dimensional Delaunay mesh generation algorithm and an adaptive remeshing technique with higher-order compressible flow solver is presented. A pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference splitting scheme with a modified multidimensional dissipation for high-speed compressible flow analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions such as the spurious bump of the carbuncle phenomenon observed from the bow shock of the flow over a blunt body and the oscillation in the odd-even grid perturbation in a straight duct for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. The performance of the combined procedure is evaluated on unstructured triangular meshes by solving several steady-state and transient high-speed compressible flow problems.

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.

A Unified Surface Modeling Technique Using a Bezier Curve Model (de Casteljau Algorithm) (베지에 곡선모델 (드 카스텔죠 알고리듬) 을 이용한 곡면 통합 모델링 기법)

  • Rhim, Joong-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.127-138
    • /
    • 1997
  • In this study, a new technique is presented, by which one can define ship hull form with full fairness from the input data of lines. For curve modeling, the de Casteljau Algorithm and Bezier control points are used to express free curves and to establish the unified curve modeling technique which enables one to convert non-uniform B-spline (NUB) curve or cubic spline curve into composite Bezier curves. For surface modeling, the mesh curve net which is required to define surface of ship hull form is interpolated by the method of the unified curve modeling, and the boundary curve segments of Gregory surface patches are generated by remeshing(rearranging) the given mesh curve net. From these boundary information, composite Gregory surfaces of good quality in fairness can be formulated.

  • PDF