• Title/Summary/Keyword: Remediation Technology

Search Result 412, Processing Time 0.025 seconds

An Innovative Expert System for the Maintenance of On-site Wastewater Treatment Process for Small-scale Residential and Commercial Sites (마을단위 소규모 하·폐수처리 공정의 효율적 유지관리를 위한 전문가 시스템에 관한 연구)

  • Kim, Seung-jun;Choi, Yong-su;Hong, Seok-won;Kwon, Gi-han;Chung, Ik-jae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.132-140
    • /
    • 2005
  • The pilot test of a new alternative for small wastewater treatment system has been conducted for two years. It consists of a hybrid bioreactor and the expert system including the process control logic, PLC system, and HMI for the process automation. In order to monitor and remote control its status, the real-time data was transferred from the on-site control center to the central station via a wireless local area network. More efficient and stable performances were observed at automatic operating mode compared with the manual. On an average, COD, SS, T-N and T-P concentrations in the effluent from the hybrid bioreactor were less than 14, 7, 12 and 0.9 mg/L, respectively. According to the result from pilot tests, the quality of treated wastewater with sand filtration was enough to be utilized again.

Speculation on international/domestic remediation technologies for the contaminated coastal area by oil spill events and future research plan (연안지역 유류오염 복원에 대한 국내/외 기술고찰 및 향후 연구계획)

  • Cha, Sung-Min;Ki, Seo-Jin;Choi, Hee-Chul;Kim, Joon-Ha
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.421-423
    • /
    • 2008
  • The development of remediation technologies in the contaminated coastal area from oil spill is essential for solving environmental disaster. Many countries including USA, France and United Kingdom have tried to make novel remediation techniques and predict oil dispersion in the ocean and coastal line by using their own models. To develop new technology of remediation, this research in advance was carried out the status of domestic and international remediation technologies and tried to suggest future research plan for developing new remediation technologies considering geographical characteristics of Korea peninsula.

  • PDF

Autohydrogenotrophic Denitrification of High Nitrate Concentration in a Glass Bead Biofilm Reactor (바이오필름 반응기상에서 수소 이용성 독립영양생물을 이용한 고농도 탈질 반응)

  • Park, Ho Il;Kim, Ji Seong;Kim, Dong Kun;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Autohydrogenotrophic denitrification of high nitrate concentration contaminated wastewater in a batch-scale biofilm reactor has been investigated. High nitrate concentration decreased as pH increased from 7.01 to 9.45. The high nitrate concentrations continuously decrease from $150mg.l^{-1}$ to $0mg.l^{-1}$. Nitrite concentrations increase at about two-thirds way through the denitrification process and thereafter it decreases with time. Autohydrogenotrophic denitrification of high nitrate concentration is passible to use drinking water as well as wastewater, and to deal with wastewater treatment by hetrotrophic denitrification.

The Extended Site Assessment Procedure Based on Knowledge of Biodegradability to Evaluate the Applicability of Intrinsic Remediation (자연내재복원기술(Intrinsic Remediation)적용을 위한 오염지역 평가과정 개발)

  • ;Robert M. Cowan
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.3-21
    • /
    • 1997
  • The remediation of contamiated sites using currently available remediation technologies requires long term treatment and huge costs, and it is uncertain to achieve the remediation goal to drop contamination level to either back-ground or health-based standards by using such technologies. Intrinsic remediation technology is the remediation technology that relies on the mechanisms of natural attenuation for the containment and elimination of contaminants in subsurface environments. Initial costs for the intrinsic remediation may be higher than conventional treatment technologies because the most comprehensive site assessment for intrinsic remediation is required. Total remediation cost, however may be the lowest among the presently employed technologies. The applicability of intrinsic remediation in the contaminated sites should be theroughly investigated to achieve the remedial goal of the technology. This paper provides the frame of the extended site assessment procedure based on knowledge of biodegradability to evaluate the applicability of intrinsic remediation. This site assessment procedure is composed of 5 steps such as preliminary site screening, assessment of the current knowledge of biodegradability, selecting the appropriate approach, analyzing the contaminant fate and transport and planning the monitoring schedule. In the step 1, followings are to be decided 1) whether to go on the the detailed assessment or not based on the rules of thumb concerning the biodegradability of organic compounds, 2) which protocol document is selected to follow for detailed site assessment according to the site characteristics, contaminants and the relative distance between the contamination and potential receptors. In the step 2, the database for biodegradability are searched and evaluated. In the step 3, the appropriate biodegradability pathways for the contaminated site is selected. In the step 4, the fate and transport of the contaminants at the site are analyzed through modeling. In the step 5, the monitoring schedule is planned according to the result of the modeling. Through this procedure, users may able to have the rational and systematic informations for the application of intrinsic remediation. Also the collected data and informations can be used as the basic to re-select the other remediation technology if it reaches a conclusion not to applicate intrinsic remediation technology at the site from the site assessment procedure.

  • PDF

A Study on the Biological Remediation Technology for Oil Contaminated Sites (유류로 오염된 토양의 생물학적 처리기법에 관한 연구)

  • Cho Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.307-312
    • /
    • 2004
  • Contamination of industrial sites has happened by a variety compounds. Petroleum hydrocarbons, which are readily biodegradable, are reported principle contaminats in most industrial sites. Therefore, the use of biological processes will be a promising technology for remediation of industrial sites. This paper addresses the possible use of biological processes in remediation of contaminated industrial sites and discusses the background and main streams of the process. The paper also characterizes representative biological systems developed for application.

  • PDF

Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment (마이크로버블 오존 산화제와 공압파쇄 장치를 연계 적용한 지중 화학적 산화법의 정화효율 평가)

  • Oh, Seung-Taek;Oh, Cham-Teut;Kim, Guk-Jin;Seok, So-Hee;Kim, Chul-Kyung;Lim, Jin-Hwan;Ryu, Jae-Bong;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • A new type of chemical oxidation technology utilizing micro bubble ozone oxidizer and a pneumatic fracturing equipment was developed to enhance field applicability of a traditional chemical oxidation technology using hydrogen peroxide as an oxidizer for in-situ soil remediation. To find an efficient way to dissolve gaseous ozone into hydrogen peroxide, ozone was injected into water as micro bubble form then dissolved ozone concentration and its duration time were measured compared to those of simple aeration of gaseous ozone. As a result, dissolved ozone concentration in water increased by 31% (1.6 ppm ${\rightarrow}$ 2.1 ppm) and elapsed time for which maximum ozone concentration decreased by half lengthened from 9 min to 33 min. When the developed pneumatic fracturing technology was applied in sandy loam, cracks were developed and grown in soil for 5~30 seconds so that the radius of influence got longer by 71% from 392 cm to 671 cm. The remediation system using the micro bubble ozone oxidizer and the pneumatic fracturing equipment for field application was made and demonstrated its remediation efficiency at petroleum contaminated site. The system showed enhanced remediation capacity than the traditional chemical oxidation technology using hydrogen peroxide with reduced remediation time by about 33%.

Emerging Remediation Technologies for the Contaminated Soil/Groundwater in the Metal Mining Areas (금속광산지역 오염 토양/지하수의 복원기술 동향)

  • 김경웅
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.99-106
    • /
    • 2004
  • Pollution reduction and/or control technology becomes one of the pressing post-semiconductor research field to lead an advanced industrial structure. Soil/groundwater remediation techniques may act as a core technology which will create many demands on pollution reduction areas. A plenty numbers of abandoned metal mines were left without any remediation action in Korea, and it may be potential sources of heavy metal and As contamination in the ecosystem. In order to bring this soil contamination to a settlement, the emerging soil/groundwater remediation techniques should be introduced. Main research topics in the United States and Europe move towards the clean remediation technology without any secondary impact and the feasible application of developing technique into the field scale study. With these advantages, several soil/groundwater techniques such as electrokinetic soil processing, permeable reactive barrier, stabilization/solidification, biosorption, soil flushing with biosurfactant, bioleaching and phytoremediation will be summarized in this paper.

Remediation of a Low Permeable Soil by Environmental Double Pile (환경이중파일 기법에 의한 저투수성 오염토양의 정화)

  • 박상규;이기호;박준범;임만빈
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.243-252
    • /
    • 2003
  • Environmental Double Pile method was presented as a device to improve low permeable contaminated soil. EDP is one of the latest technology in a concept of one step process that is applied to low permeable contaminated ground to reutilize the site by enhancing drainage, contaminated remediation, bearing capacity of piles. In order to evaluate on-site applicability of this technology, qualities of EDP's drainage, strength and remediation were assessed through a series of experiments; EDP was verified to achieve remediation and improvement of soft ground.