• 제목/요약/키워드: Remediation Technology

검색결과 412건 처리시간 0.028초

잉여슬러지의 오존분해에 따른 VFA의 생성 및 인 방출을 위한 탄소원으로의 재이용 가능성에 관한 연구 (The Study on Ozone Treatment of Wasting Activated Sludge for VFA Production and Reuse as Carbon Source for Phosphorus Release)

  • 고은택;조진우;박은영;안규홍
    • 대한환경공학회지
    • /
    • 제27권10호
    • /
    • pp.1052-1057
    • /
    • 2005
  • 본 연구에서는 오존분해 된 슬러지를 인 방출을 위한 외부 탄소원으로 사용하기 적절한지 평가하기 위하여 오존 주입량 변화에 따라 오존분해된 슬러지의 성상변화와 함께 인 방출 실험 및 VFA(Volatile Fatty Acid) 생성량을 살펴보았다. 슬러지를 오존 주입량 0.5 g $O_3/g$ SS로 분해했을 경우 TCOD(Total Chemical Oxygen Demand)와 TSS(Total Suspended Solid)는 오존분해 전 7050, 4900 mg/L에서 5850, 2867 mg/L로 각각 17, 41% 감소하였다. 또한, pH는 6.6에서 3.8로 감소하였고, SCOD(Soluble Chemical Oxygen Demand)는 38.7 mg/L에서 2760 mg/L로 약 70배 증가함을 보였다. 오존 분해에 의해 acetic acid와 같은 VFA도 새로이 생성됨을 확인하였다. Acetic acid의 경우 0.05 g $O_3/g$ SS로 분해된 슬러지에서 50.24 mg/L가 생성되었으며, 0.5 g $O_3/g$ SS로 분해된 슬러지의 경우는 123.56 mg/L로 증가되었다. 그러나 혐기성 소화에 의한 VFA의 증가량은 0.05 g $O_3/g$ SS로 분해된 슬러지에서 Acetic acid가 50.24 mg/L에서 219.28 mg/L로 가장 많이 증가되었다. 또한 낮은 오존 주입량(0.05, 01 g $O_3/g$ SS)으로 분해된 슬러지에서 관찰되지 않았던 Propionic acid는 46 mg/L가 새로이 증가하였다. 그 외 혐기성 소화로 인해 n-Butyric Acid, Propionic Acid, n-Butyric Acid, Isovaleric Acid, Valleric Acid의 농도도 증가하였다. 오존 주입량에 따라 SCOD, VFA의 농도는 증가하지만 인 방출 속도 및 경제성을 고려하여 적정 오존 주입 농도는 0.05-0.1 g $O_3/g$ SS로 조사되었다.

Next Generation Technology to Minimize Ecotoxicity and to Develop the Sustainable Environment: White Biotechnology

  • Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.143-148
    • /
    • 2005
  • This review aims to show that industrial sustainable chemistry, minimizing or reducing the ecological impacts by the chemicals, is not an emerging trend, but is already a reality through the application of 'White Biotechnology' such as 'green' chemistry and engineering expertise. A large number of current industrial case studies are presented, as well as new developments from the chemical industry. The case studies cover new chemistry, new process design and new equipment. By articulating the requirements for industrial application of sustainable chemistry, this review also seeks to bridge any existing gap between academia and industry regarding the R & D and engineering challenges needed to ensure green chemistry research enables a more sustainable future chemical industry considering eco-toxicological impacts.

VOC 함유 토양가스 모니터링을 위한 Sn$O_2$ 세라믹 가스센서의 반응특성 연구 (Sn$O_2$ Ceramic Gas Sensor for VOC Contaminated Soil Gas Monitoring)

  • 최관영;조현정;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.125-128
    • /
    • 2000
  • Recently, development of advanced soil monitoring technology has became essential for effective site remediation. Soil gas evaluation is simple and powerful technology which can reduce the environmental impact during the survey of VOC contaminated area. In this research, the feasibility test of SnO$_2$ceramic gas sensor is conducted to improve soil gas measurement technology. As a result, it is successfully proved that this gas sensor has an possibility for soil gas monitoring.

  • PDF

Application of High-spatial-resolution Satellite Images to Monitoring Coral Reef Habitat Changes at Weno Island Chuuk, Micronesia

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Min, Jee-Eun
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.687-698
    • /
    • 2021
  • We present quantitative estimations of changes in the areal extent of coral reef habitats at Weno Island, Micronesia, using high-spatial-resolution remote sensing images and field observations. Coral reef habitat maps were generated from Kompsat-2 satellite images for September 2008 and September 2010, yielding classifications with 78.6% and 72.4% accuracy, respectively, which is a relatively high level of agreement. The difference between the number of pixels occupied by each seabed type was calculated, revealing that the areal extent of living corals decreased by 8.2 percentage points between 2008 and 2010. This result is consistent with a comparison of the seabed types determined by field observations. This study can be used as a basis for remediation planning to diminish the impact of changes in coral reefs.

세척기반처리에 의한 해양오염퇴적물에 함유된 유기 오염물질 제거 공정 중 중금속 처리 가능성 (Treatability of Heavy Metals in the Washing Technology of Marine Sediments Contaminated with Organic Matter)

  • 심영섭;김경련;김석현
    • 대한환경공학회지
    • /
    • 제36권12호
    • /
    • pp.851-857
    • /
    • 2014
  • 본 연구에서는 해양오염퇴적물의 유기 오염물질을 제거하기 위한 세척기반처리 공정 중 중금속 특히 생물이용이 가능한 중금속 부분(Bioavailable Heavy Metal)의 동시 처리 가능성에 대해 평가하였다. 해양오염퇴적물 정화사업 대상인 N해역에서 퇴적물을 채취하여 본 연구의 시료로 사용하였다. 세척기반처리 공정에서 첨가제로는 산화제인 과산화수소($H_2O_2$)와 비이온 계면활성제(Tween-80)를 사용하였다. 퇴적물과 해수의 고액비는 1 : 3이며 과산화수소의 농도 1 M, 3 M, 4 M, 5 M과 0.05% Tween-80을 첨가하여 각 반응 시간(10, 20, 30, 40, 50, 60, 70, 80분, 24시간) 조건에서 시험하였다. 그 결과 총유기탄소(Total Organic Carbon, TOC) 제거 효율은 5 M + 0.05% Tween-80 24시간에서 최대 55.2%로 나타났다. 중금속 총 함량(Total Heavy Metals)은 구리(Cu), 아연(Zn), 카드뮴(Cd) 각각 29.5, 42.3, 73.0%의 제거 효율로 5 M + 0.05% Tween-80 10분에서 가장 좋은 제거효율을 보였다. 생물이용이 가능한 중금속 부분의 경우도 Cu, Zn, Cd에서 각각 60.0, 77.7, 90.2%로 5 M + 0.05% Tween-80 10분에서 가장 좋은 효율을 나타내어 유기물 처리 공정에서의 Cu, Zn, Cd 등 일부 중금속의 동시 제거 가능성을 확인하였다. 총유기탄소 함량과 생물이용이 가능한 중금속 부분의 상관분석 결과 제거 된 Cu, Zn, Cd은 $r^2$값이 0.94, 0.85, 0.69로 좋은 상관관계를 보여주었다.

Preparation of Activated Carbon Fibers from Cost Effective Commercial Textile Grade Acrylic Fibers

  • Bikshapathi, Mekala;Verma, Nishith;Singh, Rohitashaw Kumar;Joshi, Harish Chandra;Srivastava, Anurag
    • Carbon letters
    • /
    • 제12권1호
    • /
    • pp.44-47
    • /
    • 2011
  • Activated carbon fibers (ACFs) were prepared from cost effective commercial textiles through stabilization, carbonization, and subsequently activation by carbon dioxide. ACFs were characterized for surface area and pore size distribution by physical adsorption of nitrogen at 77 K. ACFs were also examined for various surface characteristics by scanning electron microscopy, Fourier transform infrared spectroscopy, and CHNO elemental analyzer. The prepared ACFs exhibited good surface textural properties with well developed micro porous structure. With improvement in physical strength, the commercial textile grade acrylic precursor based ACFs developed in this study may have great utility as cost effective adsorbents in environmental remediation applications.

펜톤 산화법에 의한 PCE 오염 토양의 정화 (Remediation of Perchloroethylene Contaminated Soil by Fenton Oxidation)

  • 이병대;김영찬
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.136-141
    • /
    • 2005
  • This paper presents applicability of Fenton oxidation to perchloroethylene(PCE) contaminated soil. The initial concentration of PCE was 187mg/kg and Fenton oxidation conditions were 1.0M $H_2O_2$ and 0.5M $Fe^{2+}$. More than 97% of PCE decomposition and 98% of dechlorination were obtained within 5 hrs. It was found that the decomposition of PCE by Fenton oxidation was followed pseudo first order and its reaction coefficient was 0.78 $hr^{-1}$. GC-MS and GC-ECD analysis of reaction intermediates confirmed only the presence of trichloroacetic acid(i.e., 1.0% of initial PCE concentration). Under Fenton oxidation conditions, it was proposed that PCE was decomposed not simultaneously but one by one.

Growth regime and environmental remediation of microalgae

  • Hammed, Ademola Monsur;Prajapati, Sanjeev Kumar;Simsek, Senay;Simsek, Halis
    • ALGAE
    • /
    • 제31권3호
    • /
    • pp.189-204
    • /
    • 2016
  • Microalgal bioremediation of CO2, nutrients, endocrine disruptors, hydrocarbons, pesticides, and cyanide compounds have evaluated comprehensively. Microalgal mitigation of nutrients originated from municipal wastewaters, surface waters, and livestock wastewaters has shown great applicability. Algal utilization on secondary and tertiary treatment processes might provide unique and elegant solution on the removing of substances originated from various sources. Microalgae have displayed 3 growth regimes (autotrophic, heterotrophic, and mixotrophic) through which different organic and inorganic substances are being utilized for growth and production of different metabolites. There are still some technology challenges requiring innovative solutions. Strain selection investigation should be directed towards identification of algal that are extremophiles. Understanding and manipulation of metabolic pathways of algae will possible unfold solution to utilization of algae for mitigation of dissolve organic nitrogen in wastewaters.

식물정화기술의 개요와 환경오염 제어에의 응용 현황 (An Overview of Phytoremediation Technology and Its Applications to Environmental Pollution Control)

  • 이재흥
    • KSBB Journal
    • /
    • 제27권5호
    • /
    • pp.281-288
    • /
    • 2012
  • Phytoremediation-the use of plants for the in situ treatment of contaminated soil and water-has recently emerged as an inexpensive and user-friendly alternative to traditional methods of environmental clean-up. The present article outlines the characteristics of phytoremediation based on accumulated research evidence, along with discussions on its advantages and disadvantages. It further reviews various mechanisms involved in the phytoremediation processes: phytoextraction, rhizofiltration, phytostabilization, phytovolatilization and phytodegradation. Along the way, the author summarizes examples of its applications to environmental pollution control. These include wastewater treatment, removal of heavy metals, and hydrocarbons, remediation of recalcitrant contaminants, phytoremediation of radionuclides, and application of transgenic plants for enhanced biodegradation and phytoremediation. The remainder of the article briefly concludes with directions for future research.

오염지하수출의 미생물학적 복원기술 (BIOLOGICAL REMEDIATION OF CONTAMINATED AQUIFER)

  • 배우근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1992년도 폐기물 매립지의 공학적 특성과 개량기술
    • /
    • pp.1-18
    • /
    • 1992
  • The contaminatlon of soil and groundwater by leachate from impmperly managed landfills, or by cheiicals and gasoline leaked flu underground storage tanks has buou a serious urldwide environmental problei. Most of those contaminants are adsorptive and absorptive into soul, while they are hardly soluble in water. Thus, the rate of self purification is very slow, causing persistent problems in water use and environmental protection when the contamination is left untreated. Biological remediatlon technologies utilize the ertraordlnary caperbllity of microorganisms In degrading a tilde spectrum of organic compounds. Among them, an in situ bioremediation technology Involves injection of supplementary materials into the subsurfce in order to bring about a significant Increase in the microbial activity. The Increased microbial activity helps remove the pollutants in situ, that is, without digging out contaminants, soil, or water. This paper focused on the features, possibilities, and limitations of the bioremedition technology.

  • PDF