• Title/Summary/Keyword: Remaining Strength

Search Result 262, Processing Time 0.025 seconds

Interface friction in the service load assessment of slab-on-girder bridge beams

  • Seracino, R.;Kerby-Eaton, S.E.;Oehlers, D.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.259-269
    • /
    • 2005
  • Many slab-on-girder bridges around the world are being assessed because they are approaching the end of their anticipated design lives or codes are permitting higher allowable loads. Current analytical techniques assume that the concrete and steel components act independently, typically requiring full-scale load testing to more accurately predict the remaining strength or endurance of the structure. However, many of the load tests carried out on these types of bridges would be unnecessary if the degree of interaction resulting from friction at the steel-concrete interface could be adequately modeled. Experimental testing confirmed that interface friction has a negligible effect on the flexural capacity of a slab-on-girder beam however, it also showed that interface friction is significant under serviceability loading. This has led to the development of an improved analytical technique which is presented in this paper and referred to as the slab-on-girder mixed analysis service load assessment approach.

A Study on Friction Welding of A2024-T6 and SM45C using Insert Metals (삽입재를 사용한 A2024-T6와 SM45C의 마찰용접에 관한 연구)

  • 강성보;윤병수;민택기
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.48-55
    • /
    • 1998
  • This study was undertaken to investigate the friction welding of A2024-T6 aluminum alloy and SM45C carbon steel using insert metals. The relationships among the friction welding conditions, the tensile strength of joints, the hardness distribution of welds, the microstructure of welds and the tensile fracture surfaces were mainly investigated through this experiment. When the A6063-T5 aluminum alloy of insert metal was used, the maximum tensile strengh of joint was obtained. In this case, the maximum joint efficiency was 75.3 percent and in the case of unusing the insert metals, it was 37.7 percent. Optimal welding conditions were N=2000rpm, P$_1$=40MPa, P$_2$=140MPa, t$_1$=1.0sec and t$_2$=5sec.

  • PDF

Linear fracture envelopes for fatigue assessment of welds in bridges

  • Ghosh, A.;Oehlers, D.J.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.347-364
    • /
    • 1996
  • Presently welded components are designed using S/N curves which predict only the fatigue life of the component. In order to ascertain the condition of the weld at any intermediate period of its life inspection is carried out. If cracks are detected in a weld fracture mechanics is used to find their remaining life. A procedure for assessment is developed here that can be used to verify the condition of a weld before inspection is carried out to detect cracks. This simple method has been developed using linear fracture envelopes by combining S/N curves with linear elastic fracture mechanics.

Mechanical characteristic of overhead transmission lines by forest fires (화염에 노출된 가공송전선의 기계적.재료적 특성 검토)

  • Kang, J.W.;Jang, T.I.;Kim, B.K.;Park, C.G.;Bang, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.339-341
    • /
    • 2002
  • The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires. This paper deals with investigation of strength deterioration performance of ACSR due to fires through several testing and analyzing data for both tension load and material analysis. Test samples are ACSR $480[mm^2]$ conductors, which are artificially fired to regular durations. As a result, it can be verified that tension load of ACSR are reduced by increasing fro duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

Personalized Face Modeling for Photorealistic Synthesis

  • Kim, Kyungmin;Shim, Hyunjung
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • Faces play a key role in revealing the personalized attributes such as the identity, emotion, health condition, etc. Due to the importance of faces, computer-assisted face modeling and reconstruction have been actively studied both in computer vision and graphics community. Especially, face reconstruction and realistic face synthesis are well-grounded research problems and various approaches have been proposed during the last decade. In this paper, we discuss a wide range of existing work in face modeling by introducing their target applications, categorizing them upon their methodology and addressing their strength and weakness on performance. Finally, we introduce remaining research issues and suggest the future research direction in face modeling. We believe that this paper provides a high-level overview on face modeling techniques and helps understand the major research issues and the trends of methodology.

용접부 쉐브론노치 형상에 대한 균열전파 특성

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.194-197
    • /
    • 1996
  • The high-strength aluminum alloy 7075-T651 was used to observe the fatigue-crack-propagation behavior for the various stress ratios with constant amplitude loading and thus to predict the fatigue life. With a chevron notch in the specimen the fatigue-crack-propagation behavior of through crack was investigated. Crack propagation behavior of through crack in the depth direction and crack growth of weldments were experimentally studied. Base material heat affected zone and weld material were considered in the fracture of weldments. The change of crack-propagation length with respect to several parameters such as stress intensity factor range(ΔK) effective stress intensity factor range(ΔKeff)ration of effective stress intensity factor range(U) stress intensity factor of crack opening point(K op) maximum stress intensity factor(K max) and number of cycles(Nf)was determined. The crack length of through crack of weldments was 2.4mm and the remaining part was a base material. The experiment was accomplished by making the crack propagate near the base material.

  • PDF

Partial-interaction fatigue assessment of stud shear connectors in composite bridge beams

  • Seracino, Rudolf;Oehlers, Deric J.;Yeo, Michael F.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.455-464
    • /
    • 2002
  • There is a growing demand to assess the remaining strength and endurance of existing composite steel and concrete bridge beams due to the aging infrastructure, increases in permissible vehicle weights and increases in their frequencies. As codes are generally dedicated to the design of new structures, new procedures are required to aid in the assessment of existing bridges to ensure that they are utilised to the full. In this paper, simple expressions are presented to perform partial-interaction analyses directly from full-interaction analyses, so that the beneficial effect of partial-interaction on the shear forces on the shear connectors can be utilised in assessment to extend the fatigue life of simply supported bridge beams and to determine the effect of remedial work if necessary. Use of the assessment technique is described by way of an illustrative example.

Engineering Estimation of Limit Load Solution for Wall-Thinned Pipes Considering Material Properties (재료물성을 고려한 감육배관의 공학적 한계하중해 제시)

  • Choi, Jae-Boong;Kim, Jin-Su;Goo, Bon-Geol;Kim, Young-Jin;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.351-356
    • /
    • 2001
  • A potential loss of structural integrity due to aging of nuclear piping may have a significant effect on the safety of nuclear power plants. In particular, failures due to the erosion and corrosion defects are a major concern. As a result, there is a need to assess the remaining strength of pipe with erosion/corrosion defects. In this paper, a limit load solution for the eroded and corroded SA106 Grade B pipes subjected by internal pressure is developed. based in 3-D finite element analyses, considering a wide range of the shape of pipeline, flaw depth and axial flaw length parametrically.

  • PDF

Development of Drift Design Methods with Weight Modification Factors (중량 수정계수를 고려한 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.161-168
    • /
    • 2003
  • In the drift design of high-rise buildings, once the geometry and dimensions of a structure are predetermined, engineer's remaining work is determination of the member size to satisfy the strength and the stiffness requirements. For the case of highrise buildings, designs are determined by the stiffness requirements at the final stage of structural design. Thus, engineers try to find a minimum weight design with maximum lateral stiffness. However, there is no guideline for engineers on the required weight of structures per unit area to satisfy the stiffness requirements. In this study, drift design method considering weight modification factors are presented and applied to a 20-story structure. The proposed drift design method considering weight modification factors may give the guideline for engineers on the amount of structural weight to attain target displacement.

  • PDF

Development of Corrosion Defect Assessment Method for City Gas Pipeline (도시가스배관 부식결함 평가방안 개발)

  • Kim, Cheol-Man;Kim, Woo-Sik;Han, Sang-In;Choi, Song-Chun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.228-233
    • /
    • 2004
  • The length of city gas pipeline is increasing with expansion of natural gas transmission rapidly. A lot of the expense was paid for repair and maintenance with increasing of pipeline length and the cost of repair and maintenance by the corrosion was the highest. It is necessary to evaluate integrity in case of thickness reduction by corrosion. There are a lot of assessment criteria for corrosion defect in foreign countries but they are not suitable for application in the country directly. In this work, we performed the burst test and the finite element analysis for city gas pipeline, KS D3507 and KS D3631 for city gas transmission, and developed the assessment method of corrosion defect, which is suitable for domestic condition.

  • PDF