• Title/Summary/Keyword: Reluctance motor

Search Result 954, Processing Time 0.029 seconds

Instant Torque of Salient Pole Rotor Type Single-Phase SRM According to Installed Permanent Magnet Starting Device or Not (영구자석 기동장치의 유무에 따른 회전자 돌극형 단상 SRM의 순간 토오크)

  • Kim Jun-Ho;Lee Eun-Woong;Lee Jong-Han;Kim Yong-Hun;Lee Hyun-Woo;Lee Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.959-961
    • /
    • 2004
  • A multi pole SRM(switched reluctance motor) is applied by the regulated current in regular sequence. So, it can be started by itself. But a single phase SRM can not be started by itself because the positive torque is only generated in the limited zone which the inductance is increased. Therefore, it is required auxiliary device for self starting which place the rotor in start position. The prototype was designed and fabricated in the previous research. It has the permanent magnet, which is installed in the bottom of the rotor, for self starting. But the permanent magnet affect the prototype during operation and cause the decrease of the torque and speed. The influence of the permanent magnet on the average torque and speed was already confirmed. On this paper, the instant torque of the prototype was calculated from the experiment results which is the inductance and current according to installed permanent magnet or not.

  • PDF

3-Phase Current Estimation of SRM Based on DC-Link Current (직류링크전류를 기반으로 한 SRM 3상전류 추정법)

  • Kim, Ju-Jin;Choi, Jae-Ho;Kim, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.307-312
    • /
    • 2006
  • This paper proposes the SRM drive system, which accurately estimates the phase currents from the DC-link current to drive SRM instead of detecting the three-phase currents. In addition, the detecting circuit of DC-link current is also proposed to increase the resolution and decrease the off-set influence. Comparing with the general drive system based on the phase current, it is verified through the experiments that the proposed SRM drive system based on the DC-link current has the good performance in steady-state response of the speed control. Using the DC-link current, all of the 3-phase currents can be easily estimated for driving the SRM.

A Study on the Structure characteristics of two phase 4/3 SRM (2상 4/3 SRM의 구조적 특성에 관한 연구)

  • Bae, Kang-Yul;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.115-121
    • /
    • 2014
  • The intrinsic simplicity, ruggedness, and simple power electronic drive requirement of a Switched Reluctance Motor(SRM) make it possible to use in many commercial adjustable speed application. The simple magnetic circuit results in a high efficiency drive and low temperature rise, and the drive system provides a good drive characteristics. This paper is provides two phase 4/3 SRM that is similar to two phase 6/3 SRM as aspect to magnetic structure. Although 6/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited, but two phase 4/3 SRM experiences a flux reversal in small part of stator yoke. The flux reversal in two phase 4/3 SRM could be relieved by an adjustment of stator yoke structure. The magnetic analysis and design considerations of the two phase 4/3 SRM have been obtained by the finite element method analysis (FEM).

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Direct Instantaneous Torque Control of SRM using 4-level Converter (4-레벨 콘버터를 이용한 SRM의 순시 토오크 제어 기법)

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • This paper presents a direct instantaneous torque control (DITC) of Switched Reluctance Motor (SRM) with a novel 4-level converter to develop a uniform torque and to improve a dynamic performance. The DITC method can reduce a high torque ripple of SRM. Drive efficiency and dynamic performance with conventional drive are low due to a slow excitation current build-up. Since the 4-level converter can obtain an addition boosted voltage to have a fast excitation and demagnetization, it can Improve dynamic performance and efficiency easily. To apply the DITC technique to a 4-level converter, a novel control scheme is presented according to the operating modes. Additionally, selection of capacitances of boosted capacitor and efficiency improvement of 4-level converter are analyzed. At last, the validity of proposed method is verified by some computer simulations md comparative experiments.

Current Control of Switched Reluctance Motor with Delta Modulation Method on EPLD Logic Design (EPLD 로직구현을 통한 델타변조기법에 의한 스위치드 리럭턴스 전동기의 전류제어)

  • Yoon, Yong-Ho;Kim, Jae-Moon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.356-361
    • /
    • 2008
  • The conventional drive system of SRM has a current sensor per each phase. The torque demand signal generated by the outer control loop is translated into individual current reference signal for each phase. The torque is controlled by regulating these currents. Using the SRM in a variable-speed control, the phase currents are generally regulated to achieve a square wave. The simplest form of current regulation uses fixed frequency delta modulation of the phase voltages. The aim of this paper is to regulate 3-phases current of SRM by only single current sensor using delta modulation with digital chip. In this paper, the asymmetric bridge converter which is able to control independently phases and be excited simultaneously is used as the driver system for 6/4 poles SRM. And the current sensor is replaced 3 sensors of each phase with only one on bus line of converter so as to detect current of every phase. The proposed delta modulation technique has been implemented in a simple digital logic circuit using EPLD(Electrically Programmable Logic Device). This method is verified through simulation and experiment results.

The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine (자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF

Maximum Torque Control of SynRM with Speed Estimation of ANN (ANN의 속도추정에 의한 SynRM의 최대토크 제어)

  • Ko, Jae-Sub;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Park, Bung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1456-1458
    • /
    • 2005
  • In this paper, a new approach for the synchronous reluctance motor control which ensures producing maximum torque per ampere(MIPA) over the entire field weakening region is presented. In addition, This paper presents a speed sensorless control scheme of SynRM using artificial neural network. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved. The proposed scheme is verified validity through simulation.

  • PDF

Noise/Vibration Analysis of a Single-Phase SRM with Skewed Stator and Rotor (고정자와 회전자의 스큐에 따른 단상 SRM의 소음/진동 특성 분석)

  • Kim, Hyun-Chul;Yang, Hyong-Yeol;Lim, Young-Cheol;Chung, Dae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.15-16
    • /
    • 2010
  • 본 논문에서는 최소의 진동/소음을 가지는 SRM을 설계하기 위하여 고정자와 회전자의 Skew에 따른 단상 6/6 SRM의 소음/진동 특성을 비교, 분석하였다. SRM(Switched Reluctance Motor)에 발생하는 소음/진동의 주 원인은 모터 구동 시 Yoke 에 발생하는 방사방향 힘의 변화라고 할 수 있다. Yoke에 작용하는 힘은 돌극이 위치한 곳에 집중되므로 더욱 큰 진동을 유발하지만 회전자와 고정자에 동일한 Skew를 적용시키면 힘을 받는 Yoke의 면적은 늘어나게 되고, 따라서 방사방향의 힘을 요크 전체로 분산 시킬 수 있다. 이에 따라 스위치 온, 오프시 요크에 인가되는 방사방향의 힘의 최대치는 감소하게 되어 진동/소음이 현저히 줄어들게 된다. 본 논문에서는 최소의 진동/소음을 가지는 SRM을 설계하기 위하여 시뮬레이션을 통하여 회전자와 고정자의 스큐 각도에 따른 힘의 분포를 분석하였다. 시뮬레이션 결과를 바탕으로 하여 대표적인 특성을 가진 $0^{\circ}$, $18^{\circ}$의 SRM을 설계하여 소음/진동을 측정한 결과 제안한 방식이 소음/진동을 현저하게 감소시키는 효과를 가짐을 입증하였다.

  • PDF

Standstill Identification of Magnetic Flux Saturation Model Including Cross-Saturation for Synchronous Motors (상호 포화를 포함한 자기저항 동기 전동기의 자속 포화 모델에 대한 정지 상태 추정 기법)

  • Woo, Tae-gyeom;Park, Sang-woo;Choi, Seung-Cheol;Yoon, Young-Doo;Lee, Hak-Jun;Hong, Chanook;Lee, Jeongjoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.364-371
    • /
    • 2021
  • A magnetic flux saturation model of Synchronous Reluctance Motors (SynRMs) and a parameter estimation method are proposed at standstill. The proposed magnetic flux model includes the nonlinear relationship between the current and the magnetic flux for self-saturation and cross-saturation. Voltage is injected at standstill to estimate the magnetic flux saturation model. Voltages are injected into the d-axis and q-axis to obtain data on self-saturation. Subsequently, voltages are simultaneously injected into the d-q axis to obtain data on cross-saturation. On the basis of the measured current and the calculated magnetic flux, the parameters of the proposed model are estimated using the least square method (LSM). Simulation and experiment were performed on a 1.5-kW SynRM to verify the proposed method. The proposed model can be used to create a high-efficiency operation table, a sensorless algorithm, and a current controller to improve the control performance of a motor.