• 제목/요약/키워드: Reluctance Torque

검색결과 490건 처리시간 0.022초

SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어 (Efficiency Optimization Control of IPMSM Drive using SPI Controller)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

4상 SRM의 토크 특성개선을 위한 컨버터 (A novel Active Converter of 4-phase SRM for Torque Characteristic Improving)

  • ;박태흡;김태형;이동희;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.265-267
    • /
    • 2008
  • As generally recognized, the driving performance of a SRM at higher speed will be degraded due to the effects of back electromagnetic force (EMF). This phenomenon can be improved via voltage boosting. So in this paper an improved converter of enhancing the performance for four-phase switched reluctance motor (SRM) is proposed. By using one additional capacitor and switches, an extra controllable boosted voltage can be produced during the rise and fall periods of a motor phase current. Then this active boosted voltage can reduce the effect of EMF on the current, particularly at high speeds. The attractive features of the proposed converter are as follows: obtaining boosted voltage to improve performance of SRM with same numbers of switch and diode as asymmetric converter, having higher control flexibility and capability of boosting voltage compared with passive boosting converters, possessing lower cost and simple control in comparison with existing active boosting converters. The performances of the proposed circuit are verified by the simulation and experiment results.

  • PDF

스위칭 각의 변화에 따른 SRM 전자기적 특성 및 진동 특성 분석 (Analysis of Vibrating and Electromagnetic Performance According to Switching Angle in SRM)

  • 이지영;하경호;이근호;조재옥;홍정표;강도현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권8호
    • /
    • pp.434-440
    • /
    • 2002
  • Switched Reluctance Motor (SRM) has been not commonly used because of the severe noise and vibration, although it has many advantages as solidity and economical efficiency. The origin of the acoustic noise and vibration in SRM's can be broadly classified into two types, mechanical and magnetic. Therefore this paper verifies the origin of vibration induced by radial magnetic forces from various experiments, and then studies the relationship between the output and vibration characteristics of SRM according to switch-on and off angles. Acceleration, torque and efficiency is measured by changing switching angles. From the comparison and analysis of the experimental results, a proper switching angle is presented for both satisfying electric performance and reducing vibration.

새로운 권선법을 이용한 4극 로렌쯔형 자기 부상 모터 (4-pole Lorentz Force Type Self-bearing Motor with a New Winding Configuration)

  • 김승종
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.73-81
    • /
    • 2002
  • This paper introduces a four-Pole Lorentz force type self-bearing motor in which a new winding configuration is proposed to enable the sing1e winding to function both as a synchronous PM motor and as a magnetic bearing. The Lorentz force type has some good points such as the linearity of control force, freedom from flux saturation, and high efficiency, unlike conventional self-bearing motors using a reluctance force. And also, compared with the previously proposed eight-pole type, this four-pole self-bearing motor is more profitable for high rotational speed. In this paper, mathematical expressions of torque and radial force in the proposed self-bearing motor are derived to show that they can be separately controlled regardless of rotational speed and time. For verification of the theory, a prototype is made, where a ring-shape outer rotor is actively controlled in two radial directions while the other motions are passively stable supposing the radial stability. Through some experiments. it is shown that the proposed scheme can provide high capability and feasibility for a small high-speed self-bearing motor.

드릴용 SRM의 최적운전을 위한 스위칭각 산정 (A Computing Switching Angle for Adaptive Operation of SRM for Drill)

  • 최경호;김남훈;백원식;김동희;노채균;김민회;황돈하
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권11호
    • /
    • pp.575-582
    • /
    • 2001
  • This paper presents a calculating method of switching angle for adaptive switched reluctance motor (SRM) drive of a drill. The operation of the SRM is completely characterized by the flux linked by one phase winding which depends only on the current in that same phase winding and the rotor position. An efficiently adaptive SRM drive is possible on appropriately scheduling the commutation angles with accurate rotor position, supplied current value and speed information. An adaptive SRM drive with reduction torque ripple should be controlled by an optimized phase current control along with rotor position. Therefore, we are suggested a computing method of switching turn-on and off angles for adaptationally SRM operation with varied rotor speed and load. To probe the computing method, we have some simulation and experiment, it is shown a good result that can be computing the optimized switching angles for an electric drill motor.

  • PDF

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

Performance of SR Drive for Hydraulic Pump

  • Lee, Sang-Hun;Lee, Dong-Hee;An, Young-Joo;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.55-60
    • /
    • 2007
  • This paper proposes a hydraulic pump system that uses a variable speed SR drive and constant capacity pump. For the design of the SRM (Switched Reluctance Motor) and digital controller, base speed and rating torque are determined from the mechanical specifications of the hydraulic pump. In order to minimize the power consumption during the maintaining of preset oil-pressure, the pressure control system changes the maximum oil-pressure band and flow rate according to the motor speed. The DSP control system adjusts the oil-pressure and the speed of the SRM from the pressure sensor signal, due to conservation of power consumption by the hydraulic pump. A 2.2Kw, 12/8 pole SR motor and DSP based digital controller are designed and tested with experimental set-up. The test results indicate that the system has some good features such as high efficiency and rapid response characteristics.

3개의 회전자 극을 갖는 SRM의 비교 연구 (A Study on the Comparison of SRMs with 3 Rotor Poles)

  • 배준경;오석규
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.92-97
    • /
    • 2014
  • The SRM is a doubly salient, singly excited machine. The torque is developed by the tendency for the magnetic circuit to adopt a configuration of minimum reluctance, i.e. for the rotor to move into in line with the stator poles and to maximize the inductance of the coils excited. It is common practice to combine them into groups of poles which are excited simultaneously; for example, 8/6 SRM (8 stator poles and 6 rotor poles) for 4 phases, 6/4, 12/8 SRM for 3 phases, 4/2, 6/3 SRM for 2 phases. Small number of phases in two-phase SRMs allows more cost savings with regards to the switching devices in the converter. The stator back irons of two phase 6/3 SRM and C-core 4/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited. In this study, the similarities, the differences, and structural characteristics between the two SRMs was studied, The magnetic analysis also has been carried out by the finite element method analysis (FEM).

C-dump 컨버터를 이용한 BLDC 전동기 구동 (BLDC Motor Drive using C-dump Converter)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.139-144
    • /
    • 2023
  • 토크, 효율 등 전동기의 최대특성을 얻기 위해 모든 전동기는 각 전동기 특성에 맞게 설계된 범용인버터를 기본적으로 사용한다. 그러나 최근 연구 결과들을 살펴보면 BLDC 범용인버터인 6-스위치 인버터를 이용한 SRM 구동 연구, 3상 BLDC 전동기를 4-스위치 인버터를 이용한 구동 연구사례들을 살펴볼 수 있다. 따라서 기존 범용인버터에서 벗어나 각 전동기를 구동할 시킬 수 있는 구동 및 제어에 대한 여러 방법에 대해 접근하여 연구 방법들을 모색할 수 있다. 이러한 연구 경향에 맞춰 본 논문에서는 SRM 구동용 컨버터인 C- dump 형태의 컨버터를 BLDC 전동기의 구동 드라이버로 적용하여 이에 대한 특성과 가능성에 관해 연구하였다.

반도체 변압기 및 스위치드 릴럭턴스 전동기(SRM)를 적용한 철도차량 추진제어 (Propulsion Control of Railway Vehicle using Semiconductor Transformer and Switched Reluctance Motor)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.127-132
    • /
    • 2022
  • 철도차량에 탑재된 전장품 중 가장 큰 하중을 차지하는 것은 주변압기로 낮은 운전 주파수(60Hz)로 인해 전력밀도가 0.2~0.4 MVA/ton 정도로 낮아 경량화에 중요한 요소로 작용하고 있다. 따라서 철도차량용 주변압기를 개선하기 위해 몰드 변압기, 반도체 변압기 등에 관한 연구가 국내외적으로 활발히 진행 중이다. 한편 국내외 철도차량에 대부분 적용되는 견인전동기로 최근에는 유도전동기를 대체하여 영구자석 동기전동기(PMSM)를 적용하려는 시도가 이루어지고 있다. 영구자석 동기전동기(PMSM)는 유도전동기에 비해 높은 출력밀도와 효율 확보가 가능하지만 제작에 필요한 재료의 가격이 비싸고 설계가 유도전동기 대비 다소 어렵다는 단점이 있다. 이러한 문제점을 고려하여 본 논문에서는 소형 경량화가 가능한 반도체 변압기를 적용하고, 철도차량의 경량화, 고효율화 등의 요구사항에 맞춰 구조가 간단하면서 회전수가 높고 고토크, 저비용인 SRM을 적용할 수 있는 연구내용을 제안하고자 한다.