• Title/Summary/Keyword: Reliability-based structural

Search Result 1,028, Processing Time 0.028 seconds

The Concepts and the Applications of Load and Resistance Factor Design and Partial Safety Factor Based on the Reliability Engineering (신뢰성공학에 근거한 하중-강도계수 설계법과 부분안전계수의 개념 및 적용)

  • Yoo, Yeon-Sik;Kim, Tae-Wan;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.309-314
    • /
    • 2007
  • Recently, the LRFD and the PSF based on structural reliability assessment have been applied to NPP designs in behalf of the conventional deterministic design methods. In the risk-informed structural integrity, it is especially possible to optimize design procedures considering cost, manufacturing and maintenance because the structural reliability concepts have confirmed the reliability for which a designer aims. Generally, in order to evaluate the PSF, the LRFD which is the design concept for evaluating safety factors respectively on the limit state function including load and resistance. This study certifies the concept and its applications of the PSF using the LRFD based on the structural reliability engineering.

  • PDF

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

Reliability-based assessment of damaged concrete buildings

  • Sakka, Zafer I.;Assakkaf, Ibrahim A.;Qazweeni, Jamal S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.751-760
    • /
    • 2018
  • Damages in concrete structures due to aging and other factors could be a serious and immense matter. Making the best selection of the most viable and practical repairing and strengthening techniques are relatively difficult tasks using traditional methods of structural analyses. This is due to the fact that the traditional methods used for assessing aging structure are not fully capable when considering the randomness in strength, loads and cost. This paper presents a reliability-based methodology for assessing reinforced concrete members. The methodology of this study is based on probabilistic analysis, using statistics of the random variables in the performance function equations. Principles of reliability updating are used in the assessment process, as new information is taken into account and combined with prior probabilistic models. The methodology can result in a reliability index ${\beta}$ that can be used to assess the structural component by comparing its value with a standard value. In addition, these methods result in partial safety factor values that can be used for the purpose of strengthening the R/C elements of the existing structure. Calculations and computations of the reliability indices and the partial safety factors values are conducted using the First-order Reliability Method and Monte Carlo simulation.

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

Reliability Based Topology Optimization of Compliant Mechanisms (컴플라이언트 메커니즘의 신뢰성 기반 위상최적설계)

  • Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.826-833
    • /
    • 2010
  • Electric-thermal-structural actuated compliant mechanisms are mechanisms onto which electric voltage drop is applied as input instead of force. This mechanism is based on thermal expansion of material while being heated. Compliant mechanisms are designed subjected to electric charge input using BESO(bi-directional evolutionary structural optimization) method. Reliability-based topology optimization (RBTO) is applied to the topology design of actuators. performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. In this study, BESO method is used to obtain optimal topology of compliant mechanisms from initial design domain. PMA approach is used to evaluate reliability index. The procedure has been tested in numerical applications and compared with the results obtained by other methods to validate these approaches.

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

System Reliability-Based Safety and Capacity Evaluation of Cable-Stayed Bridges (쳬계신뢰성에 기초한 사장교의 안전도 및 내하력 평가)

  • 조효남;이승재;임종권;김보헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.105-112
    • /
    • 1996
  • A practical approach for the assessment of system reliability-based safety and load carring capacity under vehicle traffics is proposed for the realistic evaluation of safety and rating of cable-stayed bridges. A partial event tree analysis model incorporating major critical failure paths is suggested as a practical tool for the system reliability analysis and system reliability-based capacity rating. The proposed approach for the system reliability analysis and system reliability-based rating is applied to the safety assessment of the Jindo Bridge which is one of two existing cable-stayed bridges in Korea. The results of analyses at the system level based on the system reliability are compared with those at the element level.

  • PDF

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

Reliability-Based Assessment of Structural Safety of Regid-Frame-Typed Segmental PSC Box Girder Bridges Erected by the FCM during Construction (FCM에 의한 라멘식 세그멘탈 PSC박스거더 교량의 신뢰성에 기초한 시공간 구조안전도평가)

  • Cho, Hyo-Nam;Joo., Hwan-Joong;Park, Kyung-Hoon;Moon, Kyung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.131-140
    • /
    • 2002
  • In this paper, a limit state model based on the analysis of structural behavior of segmental prestressed concrete box girder bridges and reliability-based safety assessment method are proposed for the bridges erected by free cantilever method. Strength limit state models for prestressed concrete box girder and rigid-frame type columns are developed for a structural safety assessment during construction. Based on the proposed limit state models, the reliability of the bridge is evaluated by using the Advanced First Order Second Moment method. The proposed model and method are applied to the Seo-Hae Grand Bridge built by FCM in order to verify its effectiveness in the safety assessment during construction of the kind of bridges. The sensitivity analyses of the main parameters are also performed in order to identify the important factors that need to be controlled for the safety of the bridges during construction.

Conjugate finite-step length method for efficient and robust structural reliability analysis

  • Keshtegar, Behrooz
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.415-422
    • /
    • 2018
  • The Conjugate Finite-Step Length" (CFSL) algorithm is proposed to improve the efficiency and robustness of first order reliability method (FORM) for reliability analysis of highly nonlinear problems. The conjugate FORM-based CFSL is formulated using the adaptive conjugate search direction based on the finite-step size with simple adjusting condition, gradient vector of performance function and previous iterative results including the conjugate gradient vector and converged point. The efficiency and robustness of the CFSL algorithm are compared through several nonlinear mathematical and structural/mechanical examples with the HL-RF and "Finite-Step-Length" (FSL) algorithms. Numerical results illustrated that the CFSL algorithm performs better than the HL-RF for both robust and efficient results while the CFLS is as robust as the FSL for structural reliability analysis but is more efficient.