• 제목/요약/키워드: Reliability of artificial intelligence

검색결과 204건 처리시간 0.028초

무기체계 CBM+ 적용 및 확대를 위한 무기체계 센서데이터 수집용 메타데이터 스키마 연구 (A Study on the Metadata Schema for the Collection of Sensor Data in Weapon Systems)

  • 김진영;심형섭;손지성;황윤영
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.161-169
    • /
    • 2023
  • 4차산업혁명으로 인해 인공지능(AI), 빅데이터(Big Data), 클라우드(Cloud) 등 다양한 기술들의 혁신이 가속화되고 있고 데이터가 중요한 자산으로 여겨지고 있다. 이러한 기술의 발전에 따라 국방과학기술분야에서도 기술 혁신을 창출하기 위한 다양한 노력들이 진행되고 있다. 국내에서도 정부는 2023년 3월에 첨단과학기술 강군 육성을 위한 5대 중점과 16개 과제로 구성된 「국방혁신 4.0 기본계획」을 발표했다. 이 계획에는 인사·군수 분야에서도 빅데이터를 구축하는 내용에 무기체계 운용성·가용성 향상과 국방비 절감을 위한 상태기반정비체계(CBM+) 구축에 관한 내용이 포함되어 있다. 상태기반정비(Condition Based Maintenance, CBM)는 무기체계의 신뢰도 확보와 가용성 증대를 목표로 하며 장비의 상태정보 변화를 분석하여 고장과 결함의 징후로 식별하여 정비를 수행하는 개념이고, CBM+는 기존 CBM의 개념에 잔존유효수명(Remaining Useful Life) 예측 기술이 더해진 개념이다[1]. 무기체계 상태기반정비체계 구축을 위해서는 무기체계의 상태정보 획득을 위해 센서를 설치하고 수집된 센서데이터가 필요하다. 본 논문에서는 다양한 무기체계에 설치된 센서에서 수집된 센서데이터를 효율적이고 효과적으로 관리하기 위한 센서데이터 메타데이터 스키마를 제안한다.

ChatGPT에 대한 대학생의 인식에 관한 연구 (A Study on College Students' Perceptions of ChatGPT)

  • 이정욱;김희라;신혜원
    • 한국가정과교육학회지
    • /
    • 제35권4호
    • /
    • pp.1-12
    • /
    • 2023
  • ChatGPT의 교육적 활용에 대한 관심이 증가하고 있는 시점에서 대학생을 대상으로 ChatGPT에 대한 인식을 알아보는 것은 필요하다. D대학교 2023년도 1학기 '가정생활과 문화', '패션과 미술관', '영화로 만나는 패션' 수강생을 대상으로 인터넷과 대화형 인공지능 사용실태 그리고 수업에서 ChatGPT를 활용한 후 그에 대한 인식을 설문지, 비교분석 보고서, 성찰일지로 살펴보았다. 대학생은 수업을 위한 정보는 주로 인터넷 검색과 논문에서 주로 얻고 있었으며 대화형 인공지능을 이용하는 경우는 아직 미비함을 알 수 있었다. ChatGPT는 대부분 2023년 1학기에 처음 사용하였으며 대화형 인공지능 중 주로 ChatGPT를 사용하였다. ChatGPT는 정보의 정확성과 신뢰도면에서는 조금 부족하나 쉽고 빠르게 상호작용을 하면서 정보를 찾을 수 있어 편리하며 만족도가 높아 앞으로 ChatGPT를 보다 적극적으로 활용할 용의가 있었다. ChatGPT가 교육에 미치는 영향에 대해 학생들은 자기 주도적이며 질문을 통한 문제해결 태도와 정보에 대한 검증과정을 위해 모둠별 토의·토론을 통해 확인하는 협동수업의 과정을 학습자 스스로가 설정하는 것이 긍정적이라고 하였다. 그러나 표절과 저작권, 데이터 편향성, 최신 데이터 학습부족, 정확하지 않거나 잘못된 정보를 생성하는 등의 신뢰를 저하시키는 문제점이 있다는 것을 인식하였으며 이에 대한 보완이 필요하다고 하였다.

딥 러닝 기반 코로나19 흉부 X선 판독 기법 (A COVID-19 Chest X-ray Reading Technique based on Deep Learning)

  • 안경희;엄성용
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.789-795
    • /
    • 2020
  • 전 세계적으로 유행하는 코로나19로 인해 많은 사망자가 보고되고 있다. 코로나19의 추가 확산을 막기 위해서는 의심 환자에 대해 신속하고 정확한 영상판독을 한 후, 적절한 조치를 취해야 한다. 이를 위해 본 논문은 환자의 감염 여부를 의료진에게 제공해 영상판독을 보조할 수 있는 딥 러닝 기반 코로나19 흉부 X선 판독 기법을 소개한다. 우선 판독모델을 학습하기 위해서는 충분한 데이터셋이 확보되어야 하는데, 현재 제공하는 코로나19 오픈 데이터셋은 학습의 정확도를 보장하기에 그 영상 데이터 수가 충분하지 않다. 따라서 누적 적대적 생성 신경망(StackGAN++)을 사용해 인공지능 학습 성능을 저하하는 영상 데이터 수적 불균형 문제를 해결하였다. 다음으로 판독모델 개발을 위해 증강된 데이터셋을 사용하여 DenseNet 기반 분류모델 학습을 진행하였다. 해당 분류모델은 정상 흉부 X선과 코로나 19 흉부 X선 영상을 이진 분류하는 모델로, 실제 영상 데이터 일부를 테스트데이터로 사용하여 모델의 성능을 평가하였다. 마지막으로 설명 가능한 인공지능(eXplainable AI, XAI) 중 하나인 Grad-CAM을 사용해 입력 영상의 질환유무를 판단하는 근거를 제시하여 모델의 신뢰성을 확보하였다.

챗지피티 4.0을 활용한 사용자 경험 계층 기반 사용자 경험 평가에 관한 기초적 연구 (A Basic Study on User Experience Evaluation Based on User Experience Hierarchy Using ChatGPT 4.0)

  • 한수민;박재완
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.493-498
    • /
    • 2024
  • 최근 생성형 인공지능 기술이 급속도로 발전함에 따라, 이를 실무에 활용하는 방법에 대한 관심이 높아지고 있다. 또한 사용자 요구에 부합하는 결과물을 생성하기 위한 프롬프트 엔지니어링의 중요성이 새롭게 조명되고 있다. 이러한 생성형 인공지능의 새로운 활용 가능성을 탐구하는 것은 중요한 가치를 지닐 수 있다. 본 연구는 대표적인 생성형 인공지능인 챗지피티 4.0을 활용하여 온라인 고객 리뷰 데이터 분석을 통한 효과적인 사용자 경험 평가 방법을 제안하는 것을 목적으로 한다. 사용자 경험 평가 방법은 사용자 경험 계층의 6단계 요소인 '기능성', '신뢰성', '사용성', '편의성', '감성', '의미성'을 기반으로 수행되었다. 본 연구를 위해 프롬프트 엔지니어링의 이해도를 높이고 사용자경험 계층의 명확한 개념을 파악하는 문헌연구를 수행하고, 이를 기반으로 프롬프트를 작성 및 수집된 온라인 고객 리뷰 데이터 분석을 통한 사용자 경험 평가 방법을 위한 실험이 수행되었다. 본 연구에서 우리는 사용자 경험 요소에 대한 정확한 정의 및 분류 과정에 대한 설명 입력 시, 챗지피티는 사용자 경험 평가에 대한 우수한 성능을 나타냈으나, 시간적 제약으로 다량의 데이터 분석에 한계를 나타냈음을 밝힌다. 우리는 사용자 경험 평가에 챗지피티 4.0을 활용하는 방법을 소개하고 제안함으로써 UX 분야의 발전에 공헌할 수 있는 것으로 기대한다.

합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구 (Anomaly Detections Model of Aviation System by CNN)

  • 임현재;김태림;송종규;김범수
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2023
  • 최근 미래의 운송시스템으로 도심교통항공(Urban Aircraft Mobility)이 주목받고 있으며 소형 드론도 다양한 산업에서 역할을 하고 있다. 다양한 종류의 항공 시스템 고장은 추락으로 막대한 재산 및 인명 피해로 이어질 수 있다. 항공 시스템이 많이 활용되는 무기체계에서도 고장은 임무 실패의 결과를 유발한다. 본 논문에서는 항공 시스템의 이상(Anomaly)을 탐지하여 개발 및 생산 간 시스템의 신뢰도를 높이고 운용 중 사고를 예방할 수 있도록 딥러닝 기술을 활용한 이상 탐지 모델을 연구했다. 모델 훈련 및 평가 데이터로 극저온 환경에서 시스템의 전류 데이터를 활용하였으며 이미지 인식에 많이 활용되는 딥러닝 기법 합성곱 신경망(CNN; Convolutional Neural Network)을 활용하여 딥러닝 네트워크를 구현했다. 시험 대상 시스템은 극저온 환경에서 다양한 형태의 고장이 유발되었고 전륫값의 특이점이 나타났다. 시스템 정상 및 고장 데이터를 활용하여 모델을 훈련 시키고 평가한 결과 98% 이상의 재현율(Recall)로 이상 탐지하는 것을 확인했다.

머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구 (A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning)

  • 하재준;이준혁;오주영;이동근
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.55-62
    • /
    • 2022
  • 페로브스카이트 태양전지는 4차 산업혁명으로 사물인터넷, 가상환경 등의 증가에 따른 전력 수요가 급증하면서 점진적으로 고갈되어가는 석유, 석탄, 천연가스 등의 화석연료를 대체할 태양에너지, 풍력, 수력, 해양에너지, 바이오에너지, 수소에너지 등의 신재생 에너지 분야에서 연구가 활발한 부분이다. 페로브스카이트 태양전지는 페로브스카이트 구조를 가진 유-무기 하이브리드 물질을 사용하는 태양전지 소자로 고효율, 저가의 용액 및 저온 공정으로 기존의 실리콘 태양전지를 대체할 수 있는 장점들이 있다. 기존의 경험적 방법으로 예측한 광흡수층 박막을 최적화하기 위해서 소자 특성 평가를 통해 신뢰도를 검증해야 한다. 그러나 광흡수층 박막 소자 특성 평가 비용이 많이 소요되므로 시험 횟수에 제약이 따른다. 이러한 문제점을 해결하기 위하여 광흡수층 박막 최적화의 보조 수단으로 머신러닝이나 인공지능 모델을 이용하여 명확하고 타당한 모델의 개발과 적용 가능성이 무한하다고 본다. 이 연구에서는 페로브스카이트 태양전지의 광 흡수층 박막 최적화를 추정하기 위하여 서포트 벡터 머신의 선형 커널, 가우시안 커널, 비선형 다항식 커널, 시그모이드 커널의 회귀분석 모델을 비교하여 커널 함수별 정확도 차이를 검증하였다.

6, 10, 17 GHz 반지하 실내 복도 환경의 전파 특성 분석 (Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment)

  • 이성훈;조병록
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.555-562
    • /
    • 2022
  • 4차 산업혁명시대에 반지하 실내 복도 환경에서 새로운 전파 수요를 발굴하기 위해 본 논문에서는 주파수 6, 10, 17 GHz의 전파 특성에 대한 측정 및 분석하였다. 측정한 실내 내부 환경은 3면의 강의실과 외면의 유리창으로 구성되어있는 일자형 복도이다. 본 연구는 이러한 환경에 맞게 측정 시나리오 개발과 측정 시스템을 구성하였다. 송신 안테나는 고정하고 수신 안테나 위치의 거리에 따라 가시선 환경에서 주파수 영역과 시간영역 전파 특성을 측정하여 분석 하였다. 주파수 영역은 FI(: Floating intercept) 경로 손실 모델의 매개변수와 R-squared 값의 0.5 이상에 대한 신뢰도를 얻었다. 또한, 시간 영역은 RMS(: Root mean square) 지연 확산과 K-factor의 누적 확률에서 6 GHz는 전파 전달도가 높고, 17 GHz는 전파 전달도가 낮은 결과를 얻었다. 이러한 연구 결과는 반지하 실내 복도 환경에서 WIFI 6 이상이나 5G 이상에 대해 초 연결과 초 지연 인공지능 서비스를 제공하는데 효과가 있을 것이다.

해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구 (Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction)

  • 엄대용;이방희
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.100-103
    • /
    • 2023
  • 최근 스마트선박 개발에 발맞춰 정확하고 세밀한 실시간 해양환경 예측정보의 요구가 확대되고 선박에 직접 지원하기 위한 환경이 확보됨에 따라 최적항로 분야에서도 다양한 해양환경을 고려한 정보 생산 및 평가 연구가 필요하다. 스마트선박에서 해양환경의 위험도 및 에너지 소비의 불확실성을 줄이면서 최적항로를 산출할 수 있는 알고리즘은 2단계로 구분하여 개발하였다. 1단계는 해양환경정보들과 선박자동식별시스템(AIS)내에 선박의 위치·상태정보를 결합해 프로파일을 생성하였다. 2단계는 구성한 프로파일 결과를 이용하여 해양환경 에너지맵을 정의할 수 있는 모델을 개발하였고, 약 60만개의 데이터를 반영할 수 있도록 인공지능 머신러닝 기법 중 Random Forest를 적용하여 회귀식을 생성하였다. Random Forest 회귀 모델의 결정계수(R2)는 0.89 를 보였다. 생성한 모델에 2021년 6월 1일~3일의 해양환경 예측정보를 이용하여 Dijikstra 최단경로 알고리즘을 적용해 최적 안전항로를 산출하고 맵에 표출했다. Random Forest 회귀 모델로 산출된 항로는 유선적이고 해양환경 예측정보의 상태를 감안하며 항로를 도출하는 결과를 보였다. 본 연구의 실시간 해양환경 예측정보 기반의 항로 산출 개념은 선박의 이동 경향성을 반영한 현실적이면서 안전한 항로 산출이 가능하고, 향후 경제성, 안전성, 친환경성 평가 모델로 범위로 확대할 수 있을 것으로 기대된다.

  • PDF

네트웍 기반 모듈라 로봇의 원격 제어 (Remote Control of Network-Based Modular Robot)

  • 염동주;이보희
    • 융합정보논문지
    • /
    • 제8권5호
    • /
    • pp.77-83
    • /
    • 2018
  • 동작을 기억하는 모듈라 로봇은 손으로 직접 표현하기 때문에 창의적 구조물을 쉽게 만들고, 동작시킬 수 있다. 하지만 사용자에 의하여 만들어진 동작을 저장할 충분한 저장 공간이 모듈 내에 없어서 만들어진 동작을 재사용이 불가능하며 모듈라 로봇이 다시 동작을 기억할 시에 다른 동작으로 바뀌게 된다. 또한, 다수의 모듈라 로봇을 동시에 동작시킬 수 있는 주 제어기가 없어서 직접적으로 사용자가 모듈라 로봇에 입력해야하는 단점이 있다. 이러한 단점을 극복하고자, 유선 및 무선 네트웍을 이용하고 웹 서버 및 컴퍼넌트 기반 소프트웨어를 설계하여, 주변의 스마트 기기에서 동작시킬 수 있는 원격제어기를 제안하였다. 그리고 제안된 제어기의 하드웨어 개념 및 소프트웨어의 연결 관계를 자세히 제시 하였다. 제안된 방식은 모듈라 로봇에 연결하여 다양한 형태의 구조물을 만들어 동작시키고 저장한 후 다시 재생 동작을 수행하여 동작의 재현성을 보였으며 기존의 저장된 동작을 효과적으로 재생함으로써 유용성을 확인하였다. 아울러 다운로드한 궤적 데이터를 도해적으로 표현하고 실제 동작된 궤적과의 차이를 분석하여 신뢰성을 확인하였다. 향후에는 원격제어기에 저장된 궤적을 인공지능 기법을 이용하여 표준화시켜 모듈라 로봇의 동작을 손쉽게 구현 시킬 예정이다.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.1-8
    • /
    • 2023
  • 자동차의 주요 부품인 휠 베어링에 결함이 생기면 교통사고등 문제를 발생시켜 이를 해결하기 위해 빅데이터를 수집해서 예측진단 및 관리 기술을 통한 휠 베어링의 고장 유무 및 고장 유형을 조기에 알려 주는 알고리즘과 모니터링 시스템 개발이 필요하다. 본 논문에서는 이러한 지능형 휠 허브 베어링 정비 시스템 구현을 위해 신뢰성 및 건전성에 대한 모니터링용 센서 및 예측 진단하는 알고리즘이 탑재된 임베디드 시스템을 개발하였다. 사용된 알고리즘은 휠 베어링에 설치된 가속도 센서로부터 진동 신호를 취득하고 이를 신호 처리기법, 결함주파수 분석, 건전성 특징 인자정의 등의 과정을 빅데이터 기술을 통해 고장을 예측하고 진단할 수 있다. 구현된 알고리즘은 진동 주파수 성분들은 최소화하고 휠 베어링에서 발생하는 진동 성분을 극대화할 수 있는 안정 신호 추출 알고리즘을 적용하고, 필터를 활용한 노이즈 제거에서는 인공지능 기반의 건전성 추출 알고리즘을 적용하였으며, FFT를 통한 결함 주파수를 분석하여 고장 특성인자 추출을 통한 고장을 진단하였다. 본 시스템의 성능 목표는 12,800ODR 이상으로 시험 결과를 통해 목표치를 만족하였다.