• Title/Summary/Keyword: Reliability based Design Optimization

Search Result 277, Processing Time 0.029 seconds

Reliability-Based Optimization using Sensitivity Analysis of Reliability Index (신뢰성 지수의 민감도 해석을 이용한 신뢰성에 기초한 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.101-108
    • /
    • 2000
  • An optimum design algorithm using efficient reanalysis is proposed for reliability-based optimization problems formulated as the minimization of initial cost and expected failure cost with reliability constraints. The reliability-based optimization is high cost to evaluate objective function and constraints needed reliability analysis. Therefore the sensitivity analysis of reliability index for approximated reanalysis is necessary. In this paper, three solution approaches are suggested and tested. The approaches include : (1) sensitivity analysis using finite difference; (2) sensitivity analysis using automatic differentiation (AD); and (3) sensitivity analysis with respect to intermediate variables using AD. Numerical example is optimized to show the reliability and effectiveness of the new algorithm.

  • PDF

Reliability-Based Design Optimization Considering Variable Uncertainty (설계변수의 변동 불확실성을 고려한 신뢰성 기반 최적설계)

  • Lim, Woochul;Jang, Junyong;Kim, Jungho;Na, Jongho;Lee, Changkun;Kim, Yongsuk;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.649-653
    • /
    • 2014
  • Although many reliability analysis and reliability-based design optimization (RBDO) methods have been developed to estimate system reliability, many studies assume the uncertainty of the design variable to be constant. In practice, because uncertainty varies with the design variable's value, this assumption results in inaccurate conclusions about the reliability of the optimum design. Therefore, uncertainty should be considered variable in RBDO. In this paper, we propose an RBDO method considering variable uncertainty. Variable uncertainty can modify uncertainty for each design point, resulting in accurate reliability estimation. Finally, a notable optimum design is obtained using the proposed method with variable uncertainty. A mathematical example and an engine cradle design are illustrated to verify the proposed method.

An Improved Reliability-Based Design Optimization using Moving Least Squares Approximation (이동최소자승근사법을 이용한 개선된 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.45-52
    • /
    • 2009
  • In conventional structural design, deterministic optimization which satisfies codified constraints is performed to ensure safety and maximize economical efficiency. However, uncertainties are inevitable due to the stochastic nature of structural materials and applied loads. Thus, deterministic optimization without considering these uncertainties could lead to unreliable design. Recently, there has been much research in reliability-based design optimization (RBDO) taking into consideration both the reliability and optimization. RBDO involves the evaluation of probabilistic constraint that can be estimated using the RIA (Reliability Index Approach) and the PMA(Performance Measure Approach). It is generally known that PMA is more stable and efficient than RIA. Despite the significant advancement in PMA, RBDO still requires large computation time for large-scale applications. In this paper, A new reliability-based design optimization (RBDO) method is presented to achieve the more stable and efficient algorithm. The idea of the new method is to integrate a response surface method (RSM) with PMA. For the approximation of a limit state equation, the moving least squares (MLS) method is used. Through a mathematical example and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Reliability-Based Topology Optimization for Structures with Stiffness Constraints (강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계)

  • Kim, Sang-Rak;Park, Jae-Yong;Lee, Won-Goo;Yu, Jin-Shik;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 1: Design Method (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제1편: 설계 방법)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.148-157
    • /
    • 2012
  • Reliability-based design optimization (RBDO) problem is usually formulated as an optimization problem to minimize an objective function subjected to probabilistic constraint functions which may include deterministic design variables as well as random variables. The challenging task is that, because the probability models of the random variables are often assumed based on limited data, there exists a possibility of selecting inappropriate distribution models and/or model parameters for the random variables, which can often lead to disastrous consequences. In order to select the most appropriate distribution model from the limited observation data as well as model parameters, this study takes into account a set of possible candidate models for the random variables. The suitability of each model is then investigated by employing performance and risk functions. In this regard, this study enables structural design optimization and fitness assessment of the distribution models of the random variables at the same time. As the first paper of a two-part series, this paper describes a new design method considering probability model uncertainties. The robust performance of the proposed method is presented in Part 2. To demonstrate the effectiveness of the proposed method, an example of ten-bar truss structure is considered. The numerical results show that the proposed method can provide the optimal design variables while guaranteeing the most desirable distribution models for the random variables even in case the limited data are only available.

Reliability-Based Design Optimization Using Enhanced Pearson System (개선된 피어슨 시스템을 이용한 신뢰성기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.125-130
    • /
    • 2011
  • Since conventional optimization that is classified as a deterministic method does not consider the uncertainty involved in a modeling or manufacturing process, an optimum design is often determined to be on the boundaries of the feasible region of constraints. Reliability-based design optimization is a method for obtaining a solution by minimizing the objective function while satisfying the reliability constraints. This method includes an optimization process and a reliability analysis that facilitates the quantization of the uncertainties related to design variables. Moment-based reliability analysis is a method for calculating the reliability of a system on the basis of statistical moments. In general, on the basis of these statistical moments, the Pearson system estimates seven types of distributions and determines the reliability of the system. However, it is technically difficult to practically consider the Pearson Type IV distribution. In this study, we propose an enhanced Pearson Type IV distribution based on a kriging model and validate the accuracy of the enhanced Pearson Type IV distribution by comparing it with a Monte Carlo simulation. Finally, reliability-based design optimization is performed for a system with type IV distribution by using the proposed method.

Reliability-Based Design Optimization Using Akaike Information Criterion for Discrete Information (이산정보의 아카이케 정보척도를 이용한 신뢰성 기반 최적설계)

  • Lim, Woo-Chul;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.921-927
    • /
    • 2012
  • Reliability-based design optimization (RBDO) can be used to determine the reliability of a system by means of probabilistic design criteria, i.e., the possibility of failure considering stochastic features of design variables and input parameters. To assure these criteria, various reliability analysis methods have been developed. Most of these methods assume that distribution functions are continuous. However, in real problems, because real data is often discrete in form, it is important to estimate the distributions for discrete information during reliability analysis. In this study, we employ the Akaike information criterion (AIC) method for reliability analysis to determine the best estimated distribution for discrete information and we suggest an RBDO method using AIC. Mathematical and engineering examples are illustrated to verify the proposed method.

Reliability-Based Topology Optimization Using Performance Measure Approach (성능함수법을 이용한 신뢰성기반 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, a reliability-based design optimization is developed for the topology design of linear structures using a performance measure approach. Spatial domain is discretized using three dimensional Reissner-Mindlin plate elements and design variable is taken as the material property of each element. A continuum based adjoint variable method is employed for the efficient computation of sensitivity with respect to the design and random variables. The performance measure approach of RBDO is employed to evaluate the probabilistic constraints. The topology optimizationproblem is formulated to have probabilistic displacement constraints. The uncertainties such as material property and external loads are considered. Numerical examples show that the developed topology optimization method could effectively yield a reliable design, comparing with the other methods such as deterministic, safety factor, and worst case approaches.

Tolerance Analysis and Optimization for a Lens System of a Mobile Phone Camera (휴대폰용 카메라 렌즈 시스템의 공차최적설계)

  • Jung, Sang-Jin;Choi, Dong-Hoon;Choi, Byung-Lyul;Kim, Ju-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.397-406
    • /
    • 2011
  • Since tolerance allocation in a mobile phone camera manufacturing process greatly affects production cost and reliability of optical performance, a systematic design methodology for allocating optimal tolerances is required. In this study, we proposed the tolerance optimization procedure for determining tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices. We employed Latin hypercube sampling for evaluating the reliabilities of optical performance and a function-based sequential approximate optimization technique that can reduce computational burden and well handle numerical noise in the tolerance optimization process. Using the suggested tolerance optimization approach, the optimal production cost was decreased by 30.3 % compared to the initial cost while satisfying the two constraints on the reliabilities of optical performance.

The Study of Reliability Based Optimization Design for Connection (불확실성을 고려한 접합부의 최적설계에 관한 연구)

  • Shin, Soo-Mi;Yun, Hyug-Gee;Kim, Hye-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.26-32
    • /
    • 2016
  • Usually, there are many uncertainties regarding the error of an assumed load, material properties, member size, and structure analysis in a structure, and it may have a direct influence on the qualities of optimal design of structures. Probabilistic analysis has developed rapidly into a desirable process and structural reliability analysis is an increasingly important tool that assists engineers to consider uncertainties during the design, construction and life of a structure to calculate its probability of failure. This study deals with the applications of two optimization techniques to solve the reliability-based optimization problem of structures. The reliability-based optimization problem was formulated as a minimization of the structural volume subject to the constraints on the values of componential reliability index determined by the AFOSM approach. This presented method may be a useful tool for the reliability-based design optimization of structures.