• Title/Summary/Keyword: Reliability analyses

Search Result 1,047, Processing Time 0.027 seconds

Target Probability of Failure of Quay Wall Foundation for Reliability-Based Design (안벽기초 구조물의 신뢰성설계를 위한 목표파괴확률 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.379-389
    • /
    • 2010
  • It is very important to determine a target probability of failure in reliability based design such as an allowable factor of safety in working stress design because they are indices to judge the stability of structures. We have carried out reliability analyses of nationwide gravity type quay walls and found that sliding and foundation failures of quay walls were dominant failure modes for every case of loads. And a target probability of failure for bearing capacity of foundation of quay wall was also determined in this study. Of several approaches which have been suggested until now, a couple of reasonable approaches were used. Firstly, in order to consider the safety margin of structures which have been executed so far, the reliability levels of existing structures were assessed. And then a mean probability of failure for the quay walls was estimated. In addition, life cycle cost(LCC) analyses for representative structures were performed. Probabilities of failure for several quay walls were calculated with changing the width of each quay wall section. LCC of quay wall which is requiring case by case during the service life was evaluated, and also the optimum probability of failure of quay wall which minimizes LCC was found. Finally, reasonable target probabilities of failure were suggested by comparing with mean probability of failure of existing structures.

  • PDF

A new methodology development for flood fragility curve derivation considering structural deterioration for bridges

  • Lee, Jaebeom;Lee, Young-Joo;Kim, Hyunjun;Sim, Sung-Han;Kim, Jin-Man
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.149-165
    • /
    • 2016
  • Floods have been known to be one of the main causes of bridge collapse. Contrary to earthquakes, flood events tend to occur repeatedly and more frequently in rainfall areas; flood-induced damage and collapse account for a significant portion of disasters in many countries. Nevertheless, in contrast to extensive research on the seismic fragility analysis for civil infrastructure, relatively little attention has been devoted to the flood-related fragility. The present study proposes a novel methodology for deriving flood fragility curves for bridges. Fragility curves are generally derived by means of structural reliability analysis, and structural failure modes are defined as excessive demands of the displacement ductility of a bridge under increased water pressure resulting from debris accumulation and structural deterioration, which are known to be the primary causes of bridge failures during flood events. Since these bridge failure modes need to be analyzed through sophisticated structural analysis, flood fragility curve derivation that would require repeated finite element analyses may take a long time. To calculate the probability of flood-induced failure of bridges efficiently, in the proposed framework, the first order reliability method (FORM) is employed for reducing the required number of finite element analyses. In addition, two software packages specialized for reliability analysis and finite element analysis, FERUM (Finite Element Reliability Using MATLAB) and ABAQUS, are coupled so that they can exchange their inputs and outputs during structural reliability analysis, and a Python-based interface for FERUM and ABAQUS is newly developed to effectively coordinate the fragility analysis. The proposed framework of flood fragility analysis is applied to an actual reinforced concrete bridge in South Korea to demonstrate the detailed procedure of the approach.

Development of the Self-Care Non-adherence Risk Assessment Scale for Patients with Chronic Illness (만성질환자의 자가간호 불이행 위험 사정도구 개발)

  • Jo, Mirae;Oh, Heeyoung
    • Research in Community and Public Health Nursing
    • /
    • v.32 no.4
    • /
    • pp.415-429
    • /
    • 2021
  • Purpose: The purpose of this study was to develop the Self-Care Non-adherence Risk Assessment Scale (SCNRAS) for patients with chronic illness in South Korea. Methods: This study was conducted from April to July, 2020 and utilized a convenience sampling method to recruit 336 patients with chronic illness from three hospitals located in South Korea. The content, factorial structure, item-convergent/discriminant validity, convergent validity, internal consistency reliability, and test-retest reliability of the scale were evaluated. The data were analyzed using exploratory and confirmatory factor analyses, Pearson's correlation coefficient, Cronbach's α, and intra-class correlation coefficient. Results: The exploratory and confirmatory factor analyses yielded six-factors. Convergent validity was demonstrated using measures of defining issues. Internal consistency reliability and test-retest reliability were found to be acceptable, as indicated by a Cronbach's α of .65~.81 and an intra-class correlation coefficient of .93~.98. The Self-Care Non-adherence Risk Assessment Scale for patients with chronic illness is a new instrument that comprehensively measures the knowledge, skill, physical function status, access to health care, social support, motivation, and confidence. It comprises 18 items scored on a 5-point Likert scale. The validity and reliability of the scale were verified. Conclusion: The scale developed through this study is expected to screen those who need nursing intervention early by predicting the self-care non-adherence risk group.

Application of Dynamic Reliability Model to Analysis of Armor Stability of Rouble-Mound Breakwaters (경사제 피복재의 안정성 해석에 대한 동적 신뢰성 모형의 적용)

  • Kim, Sung-Ho;Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.215-226
    • /
    • 2004
  • A dynamic reliability model which can take into account the time history of loading sequences may be applied to the analyses of the hydraulic stability of armor units on rubble-mound breakwaters. All the parameters related to the stability of structures have been considered to be constants in the deterministic model until now. Thus, it is impossible to study the effects of some uncertainties of the related random variables on the stability of structures. In this paper, the dynamic reliability model can be developed by POT(Peak Over Threshold) method in order to take into account the time history of loading sequences and to investigate the temporal behaviors of stability of structure with its loading history. Finally, it is confirmed that the results of dynamic reliability model agree with straight- forwardly those of AFDA(Approximate Full Distribution Approach) of the static reliability model for the same input conditions. In addition, the temporal behaviors of probability of failure can be studied by the dynamic reliability model developed to analyze the hydraulic stability of armor units on rubble-mound breakwaters. Therefore, the present results may be useful for the management of repair and maintenance over the whole life cycle of structure.

  • PDF

ANALYZING DYNAMIC FAULT TREES DERIVED FROM MODEL-BASED SYSTEM ARCHITECTURES

  • Dehlinger, Josh;Dugan, Joanne Bechta
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.365-374
    • /
    • 2008
  • Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

A Study on the Quality Determinants in Management Consulting (경영컨설팅 서비스 품질 구성요인에 관한 연구)

  • 김광훈;황규승
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.15-28
    • /
    • 2001
  • This paper investigates the service quality determinants in management consulting. Quality dimensions in SERVQUAL research, as well as several dimensions specific to the consulting service, have been reviewed. A survey has been conducted by carefully developed questionnaires for the hypothesized eight quality dimensions. The results of the statistical analyses support the eight quality dimensions in the consulting service : reliability, assurance, responsiveness, empathy, ethics, participation, communication, and reputation. The results demonstrate that reliability, assurance, participation, and reputation are especially influential in determining customer satisfaction. The research results provide useful insights for a customer in assessing alternative service providers and foreseeing the outcome from the chosen consultants.

  • PDF

The Study on Pyrovalve (화약작동식 밸브에 관한 연구)

  • Kang, Won-Kyu;Choi, Young-Gi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.3-6
    • /
    • 2007
  • In this study, we described the Pyrovalve used in the propulsion system. It is very important to ensure its reliablity of operation because Pyrovalve is a pyrotechnic device for controlling fuel and air line of propulsion system. so we focused on improving operational reliability through several analyses and tests.

  • PDF

Performance and Fairness Analyses of a STA/LTA based Internet Congestion Algorithm

  • Chung, Young-Jun;Song, Hwa-Sun;Joo, Sang-Yeol
    • International Journal of Reliability and Applications
    • /
    • v.3 no.2
    • /
    • pp.99-112
    • /
    • 2002
  • Traffic congestion is one of critical factors in Internet applications to guarantee their QoS and provide reliable services. This paper discusses many existing congestion control algorithms and proposes a new ISDA. The algorithm is analyzed in respect of queue length, throughput and fairness. The proposed algorithm is working well with TCP and UDP traffics to offer QoS guarantee and fairness.

  • PDF

Application of Dynamic Reliability Analysis Method to the CANDU Pressurizer System

  • Lee, Sook-Hyung;Oh, Se-Ki
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.194-201
    • /
    • 1998
  • DYLAM (Dynamic Logical Analytical Methodology) and its related methodologies are reviewed and found to have many favorable characteristics. Previous studies have shown that the DYLAM methodology represents an appropriate tool to study dynamic analysis. A hybrid model which is a synthesis of the DYLAM model, a system thermodynamic simulation model and a neural network predicative model, is implemented and used to analyze dynamically the CANDU pressurizer system. This study demonstrates that the hybrid model for system reliability analyses is effective.

  • PDF

Improved Methods for Reliability Evaluations of Structural Systems (구조계의 신뢰도해석을 위한 개선된 기법)

  • 류정수;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.51-57
    • /
    • 1992
  • The primary objective of this study is the development of second moment methods for the efficient reliability evaluations of structural systems. Two methods are presented. One is the improved first order reliability method (IFORM), and the other is the modified probabilistic network evaluation technique (MPNET). For the purpose of verifying the proposed methods, example analyses are carried out on several cases with two failure modes, a plane frame structure involving three failure modes and simplified parallel member models for fatigue reliability evaluations of offshore structures. Numerical results indicate that the effectiveness of the proposed methods over the conventional ones (i.e., the FORM and the PNET) increases very significantly as the number of failure modes of the system increases.

  • PDF