• Title/Summary/Keyword: Release pressure

Search Result 659, Processing Time 0.025 seconds

Numerical Analysis on the Die Pad/Epoxy Molding Compound(EMC) Interface Delamination in Plastic Packages under Thermal and Vapor Pressure Loadings

  • Jin Yu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.37-48
    • /
    • 1998
  • The popcorn cracking phenomena in plastic IC packages during reflow soldering are investigated by considering the heat transfer and moisture diffusion through the epoxy molding compound(EMC) along with the mechanics of interface delamination. Heat transfer and moisture diffusion through EMC under die pad are analyzed by finite difference method (FDM)during the pre-conditioning and subsequent reflow soldiering pro-cess and the amounts of moisture mass and vapor pressure at delaminated die pad/ EMC interface are calculated as a function of the reflow soldering time. The energy release rate stress intensity factor and phase angle were obtained under various loading conditions which are thermal crack face vapor pressure and mixed loadings. It was shown that thermal loading was the main driving force for the crack propagation for small crack lengths but vapor pressure loading played more significant role as crack grew.

Controlled Release of Nifedipine from Osmotic Pellet Based on Porous Membrane (니페디핀을 포함한 삼투성펠렛의 제조와 다공성막을 통한 약물방출제어)

  • Youn, Ju-Yong;Ku, Jeong;Kim, Byung-Soo;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.328-333
    • /
    • 2008
  • The osmotic delivery systems are based on osmosis. The transverse diffusion of water through a porous membrane from a medium with a low osmotic pressure to a medium with a high osmotic pressure. Nifedipine tablet dosage forms of Procardia $XL^{(R)}$(Pfizer) and $Adalat^{(R)}$(Bayer) are commercialized systems of this type that push-pull osmotic tablet operates successfully in delivering water-insoluble drugs. We prepared osmotic pellet system by fluidized bed coating method, and model-drug used nifedipine. The osmotic pellet system was composed of the core material. the swelling and osmotic pressure layer, the drug coating layer, and the porous membrane. This work is performed to investigate the effect of different factors, such as composition and thickness of membrane. The osmotic pellet has been successfully prepared by fluidized bed coating technology. The drug release behavior depended on the increase of CA ratio and thickness in porous membrane. The morphology of the osmotic pellet before and after the dissolution test were observed by SEM. In conclusion, we found that the drug release of osmotic pellet depended on the composition and coating thickness of porous membrane.

Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

Design and Strength Evaluation of an Anodically Bonded Pressurized Cavity Array for Wafer-Level MEMS Packaging (기판단위 밀봉 패키징을 위한 내압 동공열의 설계 및 강도 평가)

  • Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • We present the design and strength evaluation of an anodically bonded pressurized cavity array, based on the energy release rate measured from the anodically bonded plates of two dissimilar materials. From a theoretical analysis, a simple fracture mechanics model of the pressurized cavity array has been developed. The energy release rate (ERR) of the bonded cavity with an infinite bonding length has been derived in terms of cavity pressure, cavity size, bonding length, plate size and material properties. The ERR with a finite bonding length has been evaluated from the finite element analysis performed for varying cavity and plate sizes. It is found that, for an inter-cavity bonding length greater than the half of the cavity length, the bonding strength of cavity array approaches to that of the infinite plate. For a shorter bonding length, however, the bonding strength of the cavity array is monotonically decreased with the ratio of the bonding length to the cavity length. The critical ERR of 6.21J/㎡ has been measured from anodically bonded silicon-glass plates. A set of critical pressure curves has been generated for varying cavity array sizes, and a design method of the pressurized cavity array has been developed for the failure-free wafer-level packaging of MEMS devices.

Parameter Analysis of the Damage Area and the Financial Loss by the Gas Release Accident at Pressure Vessels (압력용기에서 가스 누출사고에 의한 피해지역 및재정적 손실의 매개변수 분석)

  • Kim, Bong-Hoon;Lee, Hern-Chang;Choi, Jae-Uk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.42-49
    • /
    • 2011
  • To achieve the safety management of an industry by using practical consequence analysis, parameters affecting damage area and financial loss by gas release accident were analyzed at pressure vessels containing flammable gas. As a result, the total financial loss cost was largely effected by the business interruption cost, and it was considered for equipment type and materials, process properties, and circumstances. Also, the consequences of the financial loss must be practically used more than the consequences of the damage area in industry.

A Study on the Effects of EGR on Engine Performance and Emissions of a HCCI(Homogeneous Charge Compression Ignition) Engine (HCCI 엔진에서 엔진성능 및 배출에 미치는 EGR의 영향)

  • Han, Sung-Bin;Chang, Yong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1630-1636
    • /
    • 2003
  • Automobile companies and research institutions in leading automobile-manufacturing nations have recently been very active with research regarding the HCCI engine for use in future vehicles. Because HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency found in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NO$_{x}$ and PM (particulate matter). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. for this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders. The experimental study of the effects of EGR rate on various gas emissions, engine performance, etc. should prove to be a valuable source of information for the development of the HCCI engine.e.

Formulation and Evaluation of Melatonin Plasters (멜라토닌 플라스터의 제제설계 및 평가)

  • Gwak, Hye-Sun;Kim, Seung-Ung;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.107-112
    • /
    • 2002
  • To investigate the feasibility of developing a novel melatonin plaster, the effects of vehicles and drug loading dose on the in vitro permeation of melatonin across dorsal hairless mouse skin from pressure-sensitive adhesive (PSA) matrices were examined. Vehicles employed were propylene glycol laurate (PGL), propylene glycol monocaprylate (PGMC) and diethylene glycol monoethyl ether (DGME). Among PSAs used, only $Duro-Tak^{\circledR}$ 87-2196 showed a good peeling property. The release from $Duro-Tak^{circledR}$ 87-2196 was proportional to the square root of time, and dose-dependent. The fluxes increased as the loading dose increased over the doses under solubility. The relatively high permeation flux $(3.03{\pm}1.37\;{\mu}g/cm^2/hr)$ was obtained when using PGMC at the melatonin loading dose of $45\;mg/140\;cm^2$. Lag time was not affected by the vehicles used but by the thickness spread. The melatonin plasters prepared using PGMC showed a good adhesive property onto skin, and showed no crystal formation.

Equilibrium Thermodynamics of Chemical Reaction Coupled with Other Interfacial Reactions Such as Charge Transfer by Electron, Colligative Dissolution and Fine Dispersion: A Focus on Distinction between Chemical and Electrochemical Equilibria

  • Pyun, Su-Il;Lee, Sung-Jai;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.227-241
    • /
    • 2008
  • This article involves a unified treatment of equilibrium thermodynamics of the chemical reaction coupled with other interfacial (phase boundary) reactions. The modified (restrictive) chemical potential ${\mu}_k^+$, such as electrochemical potential, hydrostatic-chemical (mechanochemical) potential (exceptionally in the presence of the pressure difference) and surface-chemical potential, was first introduced under the isothermal and isobaric conditions. This article then enlightened the equilibrium conditions in case where the release of chemical energy is counterbalanced by the supply of electrical energy, by the supply of hydrostatic work (exceptionally in the presence of ${\Delta}p$), and finally by the release of surface energy, respectively, at constant temperature T and pressure p in terms of the modified chemical potential ${\mu}_k^+$. Finally, this paper focussed on the difference between chemical and electrochemical equilibria based upon the fundamentals of the isothermal and isobaric equilibrium conditions described above.

Combustion Noise Characteristics in Gas and Liquid Flames (가스 및 분무화염의 연소소음 특성에 관한 실험연구)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

An Experimental Study on UNDEX Characteristics of Airbag Inflators (에어백 인플레이터의 수중폭발 특성에 대한 실험 연구)

  • Kim, Hyeongjun;Choi, Gulgi;Na, Yangsub;Park, Kyung Hoon;Chung, Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.439-446
    • /
    • 2017
  • This paper deals with an experimental study of the dynamics of an underwater bubbles and shock waves, generated by rapid underwater release of highly compressed gas. Aribag inflators, which are used for automobile's airbag system, are used to generate the extremely-rapid underwater gas release. Experimental studies of the complex underwater bubble dynamics as well as underwater shock wave were carried out in a specifically designed cylindrical water tank. The water tank is equipped with a high-speed camera and pressure sensors. The high-speed camera was used to capture the expansion and collapse of the gas bubble created by inflators, while pressure sensors was used to measure the underwater shock propagation and magnitudes. The experimental results were compared against the results of explosion of pentolite explosive. Several physical phenomena that has been observed and discussed, which are different from the explosive underwater explosion.