• Title/Summary/Keyword: Release effect

Search Result 2,882, Processing Time 0.037 seconds

Effects of Extracellular $Ca^{2+}$ and $Ca^{2+}$-Antagonists on Endothelium-Dependent Relaxation in Rabbit Aorta (토끼 대동맥 평활근의 내피세포 의존성 이완에 미치는 $Ca^{2+}$$Ca^{2+}$ 길항제의 효과)

  • Suh, Suk-Hyo;Goo, Yong-Sook;Park, Choon-Ok;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.91-102
    • /
    • 1990
  • The effects of extracellular $Ca^{2+}$ and various $Ca^{2+}$ antagonists on endothelium-dependent relaxation to acetylcholine were studied in the isolated rabbit thoracic aorta in order to elucidate the control mechanism of endothelium derived relaxing factor (EDRF) release. Endothelium was removed from aortic strips by gentle rubbing with cotton ball. The effect of hemoglobin on basal tension was also observed with hemolysate. The results obtained were as follows: 1) Endothelium-dependent relaxation (EDR) to acetylcholine (ACh) showed biphasic pattern; the initial rapid relaxation phase and the late slow relaxation phase. 2) With the depletion of the extracellular $Ca^{2+}$, EDR was gradually suppressed, especially the late slow relaxation. 3) Verapamil, nifedipine, $Mn^{2+}$ and $Cd^{2+}$ had not any effect on EDR, while $La^{3+}$ and $Co^{2+}$ suppressed EDR completely. 4) The resting tension of the strips with rubbed endothelium was not altered by the addition of hemoglobin. That of the strips with intact endothelium, however, was enhanced and EDR to ACh was completely blocked From these results, we suggest that extracellular $Ca^{2+}$ is necessary for ACh-induced slow relaxation while $Ca^{2+}$ antagonists have not any effect on EDR.

  • PDF

The Effect of Remifentanil Preconditioning on Injured Keratinocyte

  • Hong, Hun Pyo;Kim, Cheul Hong;Yoon, Ji Young;Kim, Yong Deok;Park, Bong Soo;Kim, Yong Ho;Yoo, Ji Uk
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.14 no.3
    • /
    • pp.157-165
    • /
    • 2014
  • Background: Incisional site of surgical operation become transient ischemic state and then occur reoxygenation due to vasodilatation by inflammatory reaction, the productive reactive oxygen species (ROS) give rise to many physiologic results. Apoptosis have major role on elimination of inflammatory cell and formation of granulation tissue in normal wound healing process. Remifentanil can prevent the inflammatory response and can suppress inducible nitric oxide synthase expression in a septic mouse model. After cardiopulmonary bypass for coronary artery surgery, remifentanil can also inhibit the release of biomarkers of myocardial damage. Here we investigated whether remifentanil pretreatment has cellular protective effect against hypoxia-reoxygenation in HaCaT human keratinocytes, if so, the role of apoptosis and autophagy on this phenomenon. Methods: The HaCaT human keratinocytes were exposed to various concentrations of remifentanil (0.01, 0.05, 0.1, 0.5 and 1 ng/ml) for 2 h before hypoxia (RPC/HR group). These cells were cultured under 1% oxygen tension for 24h at $37^{\circ}C$. After hypoxia, to simulate reoxygenation and recovery, the cells were reoxygenated for 12 h at $37^{\circ}C$. 3-MA/RPC/HR group was treated 3-methyladenine (3-MA), autophagy inhibitor for 1h before remifentanil treatment. Cell viability was measured using a quantitative colorimetric assay with thiazolyl blue tetrazoliumbromide (MTT, amresco), showing the mitochondrial activity of living cells. To investigate whether the occurrence of autophagy and apoptosis, we used fluorescence microscopy and Western blot analysis. Results: The viability against hypoxia-reoxygenation injury in remifentanil preconditioning keratinocytes were increased, and these cells were showed stimulated expression of autophagy 3-MA suppressed the induction of autophagy effectively and the protective effects on apoptosis. Atg5, Beclin-1, LC3-II and p62 were elevated in RPC/HR group. But they were decreased when autophagy was suppressed by 3-MA. Conclusions: Remifentanil preconditioning showed the protective effect in human keratinocytes, and we concluded that autophagy may take the major role in the recovery of wound from hypoxia-reoxygenation injury. We suggest that further research is needed about the cell protective effects of autophagy.

Experimental Studies on the Effects of Pyeongpaesan (평폐산(平肺散)의 효능(效能)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Cheol-Hyeon;Shin, Jo-Young
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.385-408
    • /
    • 1998
  • Pyeongpaesan (平肺散) has been used in Korea for many centuries as a treatment for respiratory disease. The effect of Pyeongpaesan (平肺散) on tracheal smooth muscle is not known. The purpose of the present study is to determine the effect of Pyeongpaesan (平肺散) on histamine and acetylcholine induced tracheal smooth muscle contraction in rats and guinea pigs. Guinea pig (500 g, male) and Sprague Dawley rats (200 g, male) were killed by $CO_2$ exposure and a segment (8-10 mm) of the thoracic trachea from each rat and guinea pig was cut into equal segments and mounted 'in pairs' in a tissue bath. Contractile force was measured with force displacement transducers under 0.5 g loading tension. The dose of histamine (His) and acetylcholine (Ach) which evoked 50% of maximal response ($ED_{50}$) was obtained from cumulative dose response curves for histamine and acetylcholine $(10^{-7}{\sim}10^{-4}M)$. Contractions evoked by His $(ED_{50})$ and Ach $(ED_{50})$ were inhibited significantly by Pyeongpaesan (平肺散). In guinea pig tracheal smooth muscle, the mean percent inhibition of acetylcholine induced contraction was 13.5% (p<0.05) after $10{\mu}l/ml$ Pyeongpaesan (平肺散), $64.6\(p<0.01)\;after\;30{\mu}l/ml$ Pyeongpaesan (平肺散), and $92.8\(p<0.01)\;after\;100{\mu}l/ml$ Pyeongpaesan (平肺散). In rat tracheal smooth muscle, the mean percent inhibition of acetylcholine induced contraction was $60.9\(p<0.01)\;after\;30{\mu}l/ml$ Pyeongpaesan (平肺散), and $91.2\(p<0.01)\;after\;100{\mu}l/ml$ Pyeongpaesan (平肺散). Also, in guinea pig tracheal smooth muscle, the mean percent inhibition of histamine induced contraction was $104.8\(p<0.01)\;after\;30{\mu}l/ml$ Pyeongpaesan (平肺散) and $142.3\(p<0.01)\;after\;100{\mu}l/ml$ Pyeongpaesan (平肺散). In rat tracheal smooth muscle, the mean percent inhibition of histamine induced contraction was $63.7\(p<0.01)\;after\;30{\mu}l/ml$ Pyeongpaesan (平肺散), and $107.5\(p<0.01)\;after\;100{\mu}l/ml$ Pyeongpaesan (平肺散). Propranolol $(10^{-7}M)$ slightly but significantly attenuated the inhibitory effects of Pyeongpaesan (平肺散). Following treatment with propranolol, the mean percent inhibition caused by $100{\mu}l/ml$ Pyeongpaesan (平肺散) fell to 15.7% (p<0.05) in guinea pig induced by acetylcholine contraction and the mean percent inhibition caused by $100{\mu}l/ml$ Pyeongpaesan (平肺散) fell to 22.3% (p<0.05) in guinea pig induced by histamine contraction and by $100{\mu}l/ml$ Pyeongpaesan (平肺散) fell to 28.7% (p<0.01) in rat induced by histamine contraction. Indomethacin and methylene blue $(10^{-7}\;M)$ did not significantly alter the inhibitory effect of Pyeongpaesan (平肺散). Also, I could find the effects of Pyeongpaesan (平肺散) and Pyeongpaesanga (平肺散加) morphine on the tracheal smooth muscle in guinea pig and rat did not change significantly. These results indicate that Pyeongpaesan. (平肺散) can relax histamine and acetylcholine-induced contraction of guinea pig and rat tracheal smooth muscle, and that this inhibition involves sympathetic effects and the release of cyclooxygenase products.

  • PDF

Phosphate solubilizing effect by two Burkholderia bacteria isolated from button mushroom bed (양송이배지로부터 분리한 두 Burkholderia 속 세균에 의한 인산가용화 효과)

  • Oh, Jong-Hoon;Kim, Young-Jun;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.208-213
    • /
    • 2020
  • Burkholderia contaminans PSB-A and Burkholderia ambifaria PSB-B were isolated from button mushroom bed to estimate their phosphate solubility. The phosphate-solubilizing abilities of these strains were assessed by measuring the phosphorus content in a single and co-inoculation medium for 7 days. The co-inoculation of these two strains released the highest content of soluble phosphorus (166.3 ㎍ mL-1) into the medium, followed by single inoculation of B. contaminans PSB-A (143.73 ㎍ mL-1) and B. ambifaria PSB-B (127.1 ㎍ mL-1). The highest pH reduction, organic acid production, and glucose consumption were also observed in the co-inoculation medium. According to the plant growth promotion bioassay, co-inoculation enhanced the growth of romaine lettuce much more than the single inoculation (20.4% for leaf widths and 16.6% for root lengths). Although no significant difference was noted between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, co-inoculation of PSB may have a beneficial effect on crop growth due to a synergistic effect between the strains.

Effect of Phellinus Extracts on Sprouting in Porcine Pulmonary Artery Endothelial Cells (혈관내피세포의 발아에 미치는 상황버섯 추출물의 효과)

  • Oh, In-Suk;Kim, Hwan-Gyu
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.292-297
    • /
    • 2006
  • One of the steps in angiogenesis is the degradation of the underlying basement membrane via proteases. Endothelial cells release proteinases to degrade the extracellular matrix for their sprouting in vivo. In this study, we examined the effect of water extracts of Phellinus linteusis(Phellinus extracts) and combination of Phellinus extracts and fibroblast growth factor(FGF-2) on cultured porcine pulmonary artery endothelial cells(PPAECs). Phellinus extracts induced sprouting of PPAECs, which was inhibited by MMPs and plasmin inhibitors, and induced the secretion of matrix metalloproteinase-3(MMP-3) and plasmin. At high concentration of Phellinus extracts($200{\sim}400{\mu}g/mL$), the active MMP-2 secretion was induced. It is therefore, suggested that Phellinus extracts induces the sprouting of cultured endothelial cells by means of increased active MMP-2 and plasmin secretion. Also, combination with Phellinus extracts and FGF-2 produced an enhanced effect on sprouting and secretion of active MMP-2, and MMP-3 and plasmin from PPAECs.

Cytoprotective Effect of Zinc-Mediated Antioxidant Gene Expression on Cortisol-Induced Cytotoxicity (Cortisol 유발 세포독성에 대한 아연 관련 항산화 유전자 발현 증가에 의한 세포보호 효과)

  • Chung, Mi Ja;Kim, Sung Hyun;Hwang, In Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.649-656
    • /
    • 2015
  • The protective effect of zinc against cortisol-induced cell injury was examined in rainbow trout gill epithelial cells. Cells exposed to cortisol for 24 h showed increased leakage of lactate dehydrogenase (LDH) as well as decreased cell viability in a dose-dependent manner. Treatment with zinc ($100{\mu}M$ $ZnSO_4$) reduced the severity of both LDH release and cell death as well as protected cells against cortisol-induced caspase-3 activation, indicating reduction of apoptosis. Cortisol-induced cell death, leakage of LDH, and caspase-3 activation were blocked by the glucocorticoid receptor antagonist Mifepristone (RU-486), suggesting that cell injury was cortisol-dependent. In addition, we studied the effect of zinc on the expression of antioxidant genes such as metallothionein A (MTA), metallothionein B (MTB), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G6PD) during cortisol-induced cell injury. MTA, MTB, GST, and G6PD mRNA levels increased after treatment with zinc or cortisol, separately or in combination. Higher mRNA levels of MTA, MTB, GST, and G6PD were detected when cells were treated with $100{\mu}M$ $ZnSO_4$ and $1{\mu}M$ cortisol in combination at the same time compared to treatment with zinc or cortisol separately. Cells treated with zinc showed increased intracellular free zinc concentrations, and this response was significantly enhanced in cells treated with cortisol and zinc. In conclusion, zinc treatment inhibited cortisol-induced cytotoxicity and apoptosis through indirect antioxidant action.

Influence of Ketamine on Catecholamine Secretion in the Perfused Rat Adrenal Medulla

  • Ko, Young-Yeob;Jeong, Yong-Hoon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • The aim of the present study was to examine the effects of ketamine, a dissociative anesthetics, on secretion of catecholamines (CA) secretion evoked by cholinergic stimulation from the perfused model of the isolated rat adrenal gland, and to establish its mechanism of action, and to compare ketamine effect with that of thiopental sodium, which is one of intravenous barbiturate anesthetics. Ketamine ($30{\sim}300{\mu}M$), perfused into an adrenal vein for 60 min, dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, $100{\mu}M$) and McN-A-343 (a selective muscarinic M1 receptor agonist, $100{\mu}M$). Also, in the presence of ketamine ($100{\mu}M$), the CA secretory responses evoked by veratridine (a voltage-dependent $Na^+$ channel activator, $100{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, thiopental sodium ($100{\mu}M$) also caused the inhibitory effects on the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, veratridine, Bay-K-8644, and cyclopiazonic acid. Collectively, these experimental results demonstrate that ketamine inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effect of ketamine is mediated by blocking the influx of both $Ca^{2+}$ and $Na^+$ through voltage-dependent $Ca^{2+}$ and $Na^+$ channels into the rat adrenal medullary chromaffin cells as well as by inhibiting $Ca^{2+}$ release from the cytoplasmic calcium store, which are relevant to the blockade of cholinergic receptors. It is also thought that, on the basis of concentrations, ketamine causes similar inhibitory effect with thiopental in the CA secretion from the perfused rat adrenal medulla.

The effect of antipsychotics and antidepressants on the TREK2 channel (TREK2 채널에 대한 항정신성약물 및 항우울제의 효과)

  • Kwak, Ji-Yeon;Kim, Yang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2125-2132
    • /
    • 2012
  • Fluoxetine and tianeptine are commonly used as antidepressants (AD), and haloperidol and risperidone are widely used as antipsychotic drugs (APD), and it modulates various ion channels. TREK2 channel subfamily is very similar to physiological properties of TREK1 channel which can play important roles in the pathophysiology of mental disorders such as depression and schizophrenia, therefore, the pharmacological effect of psychiatric and depression drug on TREK2 channel may be similar to those of TREK1. Using the excised inside-out patch-clamp technique, we have examined the effects of APD and AD on cloned TREK2 channel expressed CHO cells. Fluoxetine (selective serotonin release inhibitor, SSRI) inhibited the TREK2 channel in a concentration-dependent manner ($IC_{50}$ $13{\mu}M$), whereas selective serotonin reuptake enhancer (SSRE) tianeptine increased without reducing the TREK2 channel activity. Haloperidol also inhibited the TREK2 channel in a concentration-dependent manner ($IC_{50}$ $44{\mu}M$), whereas even higher concentration ($100{\mu}M$) of risperidone did not completely inhibit on the activity. This study showed that TREK2 channel was preferentially blocked by fluoxetine rather than tianeptine, and inhibited by haloperidol rather than risperidone, suggesting differential effect of TREK2 channels by APD and AD may contribute to some mechanism of adverse side effects.

Influence of Yeoldahanso-tang on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (열다한소탕(熱多寒少湯)이 저산소성(低酸素性) 대뇌신경세포(大腦神經細胞) 손상에 미치는 영향(影響))

  • Kim, Hyoung-Soon;Bae, Young-Chun;Lee, Sang-Min;Kim, Kyung-Yo;Won, Kyoung-Sook;Sihm, Gyue-Hearn;Park, Su-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.15 no.1
    • /
    • pp.72-89
    • /
    • 2003
  • To elucidate the neuroprotective effect of Yeoldahanso-tang(YHT) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT(SODIUM3,3'-{I-[(PHENYLAMINO) CARBONYL]-3,4-TETRAZOLIUM}- BIS (4-METHOXY-6-NITRO) BENZENE SULFONIC ACID HYDRATE), NR(Neutral red), MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB(Sulforhodamin B) asssay. The activity of catalase and SOD(Superoxide dismutase) was measured by spectrophometry, and $TNF-{\alpha}$(Tumor cell necrosis $fector-{\alpha}$) and PKC(Protein kinase C) activity was measured after exposure to hypoxia and treatment of YHTWE. Also the neuroprotective effect of YHTWE was researched for the elucidatioion of neuroprotective mechanism. The results were as follows; 1. Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO2 for $2{\sim}26$ minutes in these cultures and YHTWE inhibited the decrease of cell viability. 2. H2O2 treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 ${\mu}M$ for 6 hours, but YHTWE inhibited the decrease of cell viability. 3. Hypoxia decreased catalase and SOD activity, and also $TNF-{\alpha}$ and PKC activity in these cultured cerebral neurons, but YHTWE inhibited the decrease of the catalase and SOD activity in these cultures. 4. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c forom mitochondria. YHTWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxicity on cultured mouse cerebral neurons, and the YHTWE has the neuroprotective effect in blocking the neurotoxicity induced by hypoxia in cultured mouse cerebral neurons.

  • PDF

Inhibitory Effects of Syzygium aromaticum Ethanol Extracts on IgE Mediated RBL-2H3 cell Activation (IgE 매개 RBL-2H3 세포 활성화에 대한 정향 에탄올 추출물의 억제 효과)

  • Chung, Joon-Hee;Kim, Yong-Min;Park, Jong-Phil;Kim, Tae-Yeon;Kim, Ee-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Objectives : In this report, we investigated the effect of ethanol extract of Syzygium aromaticum(L.) Merr. & Perry.(SAE) on the RBL-2H3 cell-mediated allergic response and studied its possible mechanisms of action. Methods : Cytotoxicity on RBL-2H3 cell was evaluated by MTT assay. Anti-allergic activity of SAE was assessed by ${\beta}$-Hexosaminidase and Histamine secretion, ${\beta}$- Hexosaminidase and Histamine secretion were measured by ELISA assay. Evaluate the mechanisms of effect of SAE on the secretion of degranulate mediators, we examined the effect of SAE on the activation of mitogen-activated protein kinases using western blot analysis. Results : SAE had no cytotoxicity on rat basophilic leukemia cell(RBL-2H3). Moreover SAE dose-dependently inhibited RBL-2H3 cell degranulation and histamine release. SAE specifically blocked the IgE-induced p38 mitogen-activated protein kinase activation. Conclusions : Our findings provide evidence that Syzygium aromaticum ethanol extract inhibits mast cell derived allergic reaction, and also demonstrate the involvement of p38 MAPK phosphorylation.