• Title/Summary/Keyword: Relay Station(RS)

Search Result 52, Processing Time 0.029 seconds

A Mobility Supporting MAC Protocol to Improve Handover Performance in IEEE 802.16j Multi-hop Relay Networks (IEEE 802.16j 멀티 홉 릴레이 네트워크에서의 핸드오버 성능 향상을 위한 이동성 지원 MAC 프로토콜)

  • Yang, Hyeon-Chae;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.437-452
    • /
    • 2008
  • IEEE 802.16j MR networks introduce RSs (Relay Stations) within the IEEE 802.16 system in order to enhance the data throughput and extend the coverage. However, the current standardization defines that the BS (Base Station) controls MS's (Mobile Station's) handover, not only it induces the large signaling overhead but also handover latency could increase. In this paper, we propose a handover protocol in the MR networks where the high capability RSs that can process the MS's control functions are deployed. First, we classify the handover scenarios for the MR networks with the high capability RSs. Then, we define the MAC handover procedure, corresponding MAC management messages and the transmission routes for the proposed messages so that an 802.16e MS can perform seamless handover without noticing it is attached to an MR network. The simulation results show that the proposed handover protocol not only reduces the MAC management message overhead transferred through the wireless links compared to IEEE 802.16j/D1, which is the current standard for MR networks, but also performs the rapider and more secure MS handover than IEEE 802.16e and IEEE 802.16j/D1.

A Receive Diversity Combining Technique for SC-PDMA-based Cooperative Relays (SC-FDMA 기반 상호협력 릴레이를 위한 수신 다이버시터 결합 기법)

  • Woo, Kyung-Soo;Kim, Yeong-Jun;Yoo, Hyun-Il;Kim, Jae-Kwon;Yun, Sang-Boh;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.302-308
    • /
    • 2009
  • In this paper, two receive diversity combining techniques are proposed for single-carrier Sequency division multiple access (SC-FDMA)-based cooperative relay systems when DFT spreading sizes for mobile station (MS) and relay station (RS) are different. A simplified-MRC (5-MRC) technique performs diversity combining in the time domain using the estimated channel weight and initial values obtained by SC-FDMA signal detection. An interference rejection-MRC (IR-MRC) technique performs diversity combining in the frequency domain by adjusting DFT spreading size in the receiver. It is shown by computer simulation that the proposed receive diversity combining techniques achieve a significant performance gain over the conventional MRC technique with zero forcing (ZF) detector.

Capacity Analysis of MMR(Mobile Multihop Relay) System (MMR(Mobile Multihop Relay) 시스템의 용량 분석)

  • Lee, Kang-Won;Kook, Kwang-Ho;Choi, Song-In
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2008
  • This study shows achievable capacity gain from the MMR system. Relay stations are placed along the cell boundary in tiers. We can have as many tiers of relays and as many relays in each tier as we want. A model is developed, which can estimate the system capacity varying the number of relays in each tier and the bandwidths allocated to the BS and the RS. It is shown that maximum capacity increases are 21.5% and 18.9% when we have relays in the first tier only and in the first and the second tiers, respectively.

Performance Analysis of Single-frame Mode and Multi-Frame Mode in IEEE802.16j MMR System (IEEE802.16j MMR 시스템에서 Single-Frame 방식과 Multi-Frame 방식의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Yoo, Chang-Jin;Ryu, Seung-Wan;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6B
    • /
    • pp.403-410
    • /
    • 2008
  • In this paper, we investigate the performance of MMR system in Non-transparent mode. The IEEE 802.16j MMR system has two node of operation, Single-frame (in band) and Multi-frame (out band) mode. In the analysis, we assume that channel interference between MR-BS and RS, or between RSs anywhere in the given area is ignored. The performance is presented in terms of the delay and the frame efficiency by varying number of RS and BS coverage to RS coverage ratio and the maximum coverage area of a BS by varying traffic density. Analytical results show that the Single-frame is more efficient than Multi-frame in frame efficiency and coverage extension.

A Cognitive Radio based Multi-hop Relay Cellular Network

  • Hassan, Md. Imrul;Song, Ju-Bin;Kim, Young-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.97-98
    • /
    • 2007
  • In this paper, we investigate the throughput capacity of a multi-hop relay network with cognitive radio (CR) enabled relay stations (RS). We suggested a TDMA/FDMA based frame structure where RSs dynamically select unused channels to communicate with the base station (BS) using CR techniques to analyze the throughput capacity. We developed the throughput capacity model for the proposed system based on utilization factor. The analytical results based on those equations show significant improvement in throughput capacity for CR enabled multi-hop relay system.

  • PDF

Self-Interference Cancellation-Aided Relay Beamforming for Multi-Way Relaying Systems (다중방향 릴레이 시스템을 위한 자가간섭 소거 보조 릴레이 빔형성 기법)

  • Le, Anh Duc;Park, Jin Bae;Cho, Yong Ok;Jeong, Min A;Lee, Seong Ro;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.378-386
    • /
    • 2013
  • In this paper, we propose a multi-way relaying system, in which N communicating nodes interchange their information one another by the help of a multiple-antenna non-regenerative relay station (RS). While the conventional multi-way relaying requires 2N transmission phases to complete the data exchange, the proposed system completes the mission with N phases composed of one multiple access phase and N-1 broadcast phases. For effective broadcast transmission, the proposed system pairs users for signal transmission with a new RS beamforming matrix not to interfere with the nodes of different pairs and a self-interference canceler at each node. The performance evaluation in terms of the average sum rate shows that the proposed system outperforms the conventional one with more significant gain when the number of RS antennas is comparable to the number of communicating nodes. The proposed schemes can be applicable to marine communications where the ships need to share their information with extended coverage.

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.

Application of Network Coding to IEEE 802.16j Mobile Multi-hop Relay Network for Throughput Enhancement

  • Lee, Kyung-Jun;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.412-421
    • /
    • 2008
  • We observe simultaneous transmission of relay stations (RSs) allowed in current IEEE 802.16j draft standard for multi-hop relay networks may involve severe interference among the RSs, hence leading to throughput degradation. Allowing only 1/3 of the RSs to simultaneously transmit instead of 1/2 RSs as in the current draft standard reduces the interference but results in reduced throughput. To remedy this problem, we devise schemes to incorporate network coding at link-layer level (decode-and-forward) into the simultaneous transmission of RSs. Data movement is rearranged to maximize coding gain. Formula is derived to dictate exact movement of packets traveling between base station (BS) and mobile stations (MSs) via intermediate RSs. The frame structure in the current IEEE 802.16j draft standard does not allow broadcast needed for network coding. We devise a new frame structure which supports the broadcast. A new R-MAP (pointers to the burst data) is introduced to implement the broadcast. Since our new frame structure is used only for BS to RS or RS to RS communication, our schemes retain backward compatibility with legacy MSs based on IEEE 802.16e standard. Simulation based on simple configuration of RSs shows considerable improvement in terms of system throughput and round trip delay. For a 4-hop relay network with 1 BS and 4 RSs with symmetric traffic in uplink (UL) and downlink (DL), throughput is improved by 49% in DL and by 84% in UL traffic compared with IEEE 802.16j draft standard under the assumption that omni-directional antennae are used in BS and RSs.

The Schemes for Improvement of Indoor Data Transmission Rate over WiBro System (건물내부에서 WiBro 시스템의 속도향상 방안)

  • You, Seung-Rok;Cho, Chi-Hyun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.999-1002
    • /
    • 2007
  • 널리 보급된 컴퓨터와 인터넷 그리고 모바일기기의 발달은 우리사회에 큰 변화를 주었다. 이는 이동성을 제공하면서 휴대 인터넷을 사용할 수 있는 서비스를 절실히 필요로 하게 되었고 그러한 요구에 부응하여 WiBro가 탄생하였다. 본 논문에서는 WiBro의 Downlink(DL)와 Uplink(UL)의 속도를 다양한 환경에서 현재 시판중인 WiBro 모뎀으로 성능을 평가해 보았고, 그 결과 WiBro에서 추구하는 DL:UL의 비율과 비슷하게 나옴을 확인하였다. 하지만 서비스 지역의 건물 내에서 WiBro의 서비스를 원활하게 받지 못하는 문제점을 발견하였고, 그 해결책으로 Fixed RS, Nomadic RS, 그리고 Mobile RS 3가지 방식을 제안하였다. 특히 건물의 경우는 Fixed RS(Relay Station)에서 Broadcast message 방식과 Wake-up 방식을 사용하도록 제안하였다.

Capacity Analysis of IEEE802.16j MMR System Using Directional Antenna (지향성 안테나를 사용하는 IEEE802.16j 멀티 홉 릴레이 시스템의 용량 분석)

  • Kim, Seung-Yeon;Yoo, Chang-Jin;Kim, Se-Jin;Ryu, Seung-Wan;Cho, Choong-Ho;Lee, Hyong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2B
    • /
    • pp.170-177
    • /
    • 2009
  • In this paper, we propose the structures of the NBTC (Narrow-Beam Trisector Cell) and the WBTC(Wide-Beam Trisector Cell) in which directional antennas both at the base station and at the relay station are used. We analyze and compare total capacity of the both systems taking the co-channel interference into consideration for two channel models. Through analysis, we find the effect of LOS (Lind of Sight) path to the total capacity of NBTC structure and that of WBTC structure. Our work may be useful as a guideline to control the interference for the next generation mobile communication and WiBro systems using multi-hop relays.