• 제목/요약/키워드: Relative vertical velocity

검색결과 54건 처리시간 0.036초

Three-dimensional numerical simulation of turbulent flow around two high-rise buildings in proximity

  • Liu, Min-Shan
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.271-284
    • /
    • 1998
  • This paper uses the numerical simulation to investigate the interference effect of 3-D turbulent flow around two high rise buildings in proximity at the different relative heights, gaps, and wind velocities. The computer program used to carry out the simulation is based on the control volume method and the SIMPLEST algorithm. The ${\kappa}-{\varepsilon}$ model was used to simulate turbulence effects. Since the contracted flow between two adjacent buildings enhances the strength of vortex shedding from the object building, the pressure coefficient on each side wall of the object building is generally increased by the presence of apposed building. The effect is increased as the relative height or the gap between the two buildings decreases. The velocity on the vertical center line between two buildings is about 1.4 to 1.5 times the upstream wind velocity.

장마전선에서 발생한 2006년 6월 25일의 호우 사례에 대한 종관자료의 운동학적 특성 분석 (Analysis of Kinematic Characteristics of Synoptic Data for a Heavy Rain Event(25 June 2006) Occurred in Changma Front)

  • 김미애;허복행;김경익;이동인
    • 대기
    • /
    • 제19권1호
    • /
    • pp.37-51
    • /
    • 2009
  • Kinematic characteristics of a heavy rainfall event occurred in Changma front are analyzed using synoptic weather charts, satellite imagery and NCEP(National Centers for Environmental Prediction) / NCAR(National Centers for Atmospheric Research) reanalysis data. The heavy rainfall is accompanied with mesoscale rain clouds developing over the Southwest region of Korea during the period from 0300 LST to 2100 LST 25 June 2006. The surface cyclone in the Changma front is generated and developed rapidly when it meets following vertical conditions: The maximum value of relative vorticity is appeared at 700 hPa and is extended gradually near the surface. It is thought that the vertical structure of relative vorticity is closely related with the descent of strong wind zone exceeding $10ms^{-1}$. The jet core at 200 hPa is shifted southward and extended downward and the low-level jet stream associated with upper-level jet stream appeared at 850 hPa. Kinematic features of heavy rainfall system at cyclone-generating point are as follows: In the generating stage of cyclone, the relative vorticity below 850 hPa increased and the convergence below 850 hPa and the divergence at 400 hPa are intensified by southward movement of jet core at 200 hPa. The heavy rainfall system seems to locate to the south of the exit region of upper-level jet streak; In the developing stage of cyclone, the relative vorticity below 850 hPa and the convergence near surface are further strengthened and upward vertical velocity between 850 hPa and 200 hPa is increased.

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

수직면 직선추종유도법칙 설계 (A Vertical Line Following Guidance Law Design)

  • 황익호;조성진
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1309-1313
    • /
    • 2010
  • In this paper, we propose a novel guidance law for controlling an UAV(Unmanned Air-Vehicle) to follow a reference line in vertical plane. A kinematics model representing the relative motion of the UAV to the reference line is derived. And then LQR(Linear Quadratic Regulator) theory is applied to the model to derive the VLFG(Vertical Line Following Guidance) law. The resultant guidance law forms a gain-scheduling controller scheduled by a simple parameter $\sigma$ which is a function of the UAV's velocity, axial acceleration, gravity, and the slope of the reference line. Also derived is a stability condition for the $\sigma$ variation based on Lyapunov theory. Simulation results show that the proposed guidance law can be applied effectively to UAV guidance algorithm design.

전단파 속도를 통한 모래의 전단강도 예측 (Shear Strength Estimation of Clean Sands via Shear Wave Velocity)

  • 유진권;박두희
    • 한국지반공학회논문집
    • /
    • 제31권9호
    • /
    • pp.17-27
    • /
    • 2015
  • 벤더엘리먼트가 장착된 삼축압축시험장비를 이용하여 모래에 대한 일련의 압밀배수시험을 수행하였다. 상대밀도 및 유효구속응력 조건을 달리하여 각각의 조건별 응력-변형률 관계를 측정하였으며, 압밀이 종료된 시점에서의 전단파 속도를 측정함으로써 전단파 속도와 간극비, 유효응력, 그리고 전단강도와의 상관관계를 분석하였다. 분석 결과, 미소변형률에서의 전단파 속도로부터 계산된 최대전단탄성계수와 파괴 시의 축응력과 압밀 시의 구속응력의 합으로 정의되는 유효수직응력간에는 고유한 상관관계가 존재하는 것으로 나타났다. 도출된 전단탄성계수와 유효수직응력간의 상관관계는 유효구속응력을 정규화시킴으로써 정확도를 향상시켰다. 본 연구를 통해 제시된 상관관계를 통해 전단강도 및 내부 마찰각을 예측하였을 시, 실제 실내 시험을 통해 산출된 내부 마찰각을 정확하게 예측할 수 있는 것으로 나타났다. 이는 미소변형률에서의 전단파 속도를 기반으로 신뢰성 높은 파괴 시 전단강도, 나아가 내부 마찰각까지 예측이 가능하다는 것을 의미하며 기존 SPT-N value와 경험식을 통해 내부 마찰각을 예측하여 설계에 적용하는 방식의 불확실성을 개선해 줄 수 있는 매우 유용한 방법이라고 판단된다.

도시가스 수직 배관 내 정지된 수소-메탄 혼합가스의 성층화 현상 연구 (A Study on Stratification Phenomena of Still Hydrogen-Methane Gas Mixture in a Vertical Urban Gas Pipe)

  • 김태균;조정민;성재용
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.68-78
    • /
    • 2024
  • The stratification phenomena of still hydrogen (20%) and methane (80%) gas mixture in a vertical urban gas pipe have been investigated by simulating the flows based on a mixture model. The stratification is accompanied with the natural convection by the buoyancy force. The hydrogen volume fraction in the upper sections of the pipe increases with time but the increasing rate gets smaller due to the weaker buoyancy force. The pipe with a smaller diameter exhibits a higher peak of hydrogen concentration. The size of vortices is proportional to the pipe diameter. The slip velocity between hydrogen and methane oscillates with a large amplitude at the earlier stage of stratification and then the amplitude decreases sharply. The slip velocity decreases with the diameter, making the stratification become slower. The length of pipe does not affect the stratification since the pipe is sufficiently long relative to the size of vortices.

Analysis of tail flip of the target prawn at the time of penetrating mesh in water flow by tank experiments

  • KIM, Yonghae;GORDON, Malcolm S.
    • 수산해양기술연구
    • /
    • 제52권4호
    • /
    • pp.308-317
    • /
    • 2016
  • The tail flip of the decapod shrimp is a main feature in escaping behavior from the mesh of the codend in the trawl. The characteristics of tail flip in target prawn was observed and analyzed in a water tunnel in respect of flow condition and mesh penetration by a high speed video camera (500 fps). The tail bending angle or bending time in static water was significantly different than in flow water (0.7 m/s) and resultantly the angular velocity in static water was significantly higher than in flow water when carapace was fixed condition. When escaping through vertical traverse net panel in water flow the relative moving angle and relative passing angle to flow direction during tail flip, it significantly decreases the number of shrimps escaping than the case of blocking shrimp. The bending angles of tail flip between net blocking and passing through mesh were not significantly different while the bending time of shrimp passing through mesh was significantly longer than when shrimp blocking on the net. Accordingly the angular velocity of passing through mesh was significantly slower than blocking on the net although the angular velocity of the tail flip was not significantly related with carapace length. The main feature of tail flip for mesh penetration was considered as smaller diagonal direction as moving and passing angle in relation to net panel as right angle to flow direction rather than the angular velocity of tail flip.

현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발 (Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension)

  • 정홍규;김상섭
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

ADCP를 이용한 직선 하천의 유속 및 수심 측정 정확도 분석 (Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP)

  • 김종민;김동수;손근수;김서준
    • 한국수자원학회논문집
    • /
    • 제48권5호
    • /
    • pp.367-377
    • /
    • 2015
  • 최근 수문관측의 측정 인력과 비용의 절감과 측정 정확도를 높이기 위해 초음파를 이용한 ADCP 유량 측정 방법의 적용이 활발하게 이루어지고 있으며 점점 그 비중이 높아지고 있다. 하지만 ADCP의 유속 및 수심 측정 정확도에 대한 자료가 부족하여 ADCP 측정 결과에 대한 신뢰도를 확신하기 어렵다. 이에 본 연구에서는 직선하천에서 체계적이고 정밀한 측정을 통해 ADCP의 유속 및 수심 정확도를 분석하였다. ADCP의 유속 측정 정확도를 분석하기 위해 횡단면에 184개의 측점에서 측정한 ADV 유속 측정 결과와 ADCP의 유속 측정 결과를 비교하여 오차를 계산하였다. 그 결과 바닥을 기준으로 수심비(y/h)가 0.4~0.8 범위에서는 ADCP가 정확하게 유속을 측정하는 것으로 나타났으나, 수면 근처에서는 유속을 작게 측정하였고, 하상 근처에서는 유속을 크게 측정하여 정확도가 떨어지는 것을 확인하였다. 또한 ADCP의 수심 정확도를 분석한 결과 하상추적(bottom tracking) 방식이 약 6%의 오차를 보였고, 연직 빔(vertical beam) 방식이 약 9%의 오차를 보여 식생이 활착한 자연하천의 경우 하상추적 방식이 좀 더 정확하게 수심을 측정하는 것으로 확인하였다. 그리고 고정 측정 방법과 이동 측정 방법의 차이를 검토한 결과 두 방법 모두 유사한 정확도를 나타냈다. 이와 같은 연구 결과는 향후 ADCP의 측정 불확도 평가를 위한 기초 자료로 활용한다면 ADCP를 하천에 적용함에 있어 좀 더 정확한 유속 및 수심 측정이 가능할 것으로 기대된다.

타워 관측 자료를 이용한 연안 대기 경계층 내 바람 자원의 연직 변동 특성 (Characteristics of Vertical Variation of Wind Resources in Planetary Boundary Layer in Coastal Area using Tall Tower Observation)

  • 유정우;이화운;이순환;김동혁
    • 한국대기환경학회지
    • /
    • 제28권6호
    • /
    • pp.632-643
    • /
    • 2012
  • Analysis of wind resources in Planetary Boundary Layer (PBL) using long term observation of tall tower located near coast line of the Korean Peninsula were carried out. The data observed at Pohang, Gunsan and Jinhae are wind, temperature and relative humidity with 10 minute interval for one year from 1 October 2010. Vertical turbulence intensity and its deviation at Pohang site is smaller than those of other sites, and momentum flux estimated at 6 vertical layers tend to show small difference in Pohang site in comparison with other sites. The change of friction velocity with atmospheric stability in Pohang is also not so great. These analysis indicate the mechanical forcing due to geographical element of upwind side is more predominant than thermal forcing. On the other hand, wind resources at Gunsan and Jinhae are mainly controlled by thermal forcing.