• Title/Summary/Keyword: Relative space

Search Result 1,128, Processing Time 0.026 seconds

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

Factors Affecting Temperature of Urban Parks (도시공원의 기온에 영향을 미치는 요인)

  • 윤용한;송태갑
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.39-48
    • /
    • 2000
  • The purpose of this study is to investigate the factors affecting temperature of urban parks to grasp the relationship between the land coverage in open space as well as the forest condition and decreasing city temperature by difference of purposed are. Futhermore, this research interpreted the relationship between wind direction, air temperature, the land coverage of the green space, the number of tree, green volume, height of tree and the mitigation of city temperature with the revolution analysis. The result of this study is that cool air in open space move leeward and decreasing city temperature is influenced by the difference of the land coverage in open space. Specifically, in order of the arbo $r_{-a}$rbor in the forest zone, the increase of the number of trees was related with temperature surrounding significantly. This study found that the use possibility of the green volume was recognized as the index of the green volume relative to air temperature surrounding. Green space of the city control area is more effective decreasing temperature than that of housing zone.

  • PDF

A Study on the Determination of Contact Area of a Plate on Elastic Half-Space (탄성지반 위에 놓인 평판의 접촉영역 결정에 관한 연구)

  • 정진환;이외득;김동석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.405-412
    • /
    • 1998
  • According to the relative stiffness between the half-space and plate or loading condition, some parts of the plate can be separated from the half-space. The finite element procedure to determine the contact area by considering the distribution of contact pressure between plate and the elastic half-space is developed. The vertical surface displacements of the elastic half-space can be obtained through the integrations of the Boussinesq's solution for a point load. The rectangular plate on the elastic half-space is modeled by the 8-node rectangular and 6-node triangular elements and the Mindlin plate theory is used in oder to consider the transverse shear effect. In this study, the contact area may be determined approximately by the analysis with rectangular elements. From this results, the mesh pattern is modified by using triangular and rectangular elements. The contact area can be determined by the new mesh pattern with a relatively sufficient accuracy.

  • PDF

A STUDY ON SPACE ZONING BY COMPUTING IDLE-TIMES IN CONSTRUCTION PROCESSES

  • Sang-Min Park;Won-Suk Jang;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.509-512
    • /
    • 2013
  • An inappropriate space zoning plan causes the unnecessary transportation of construction material and equipment among work areas and increases the disorder of work space. Space zoning is an essential operation management technique which contributes to reduce the process and/or operation idle-time. This paper introduces a method that computes the idle-times between construction operations (or processes) by using Web-CYCLONE. It allows computing with idle-times that affect the construction productivity. Using the idle time between operations and between processes, it computes the optimal number of zones and finds the optimal combination of zones that minimize the idle times. The method contributes to minimize the idle times relative to the operation schedule using complete enumeration. This paper presents the system prototype in detail. A case study is presented to demonstrate the system and verifies the validity of the model. It allows a project manager to establish space zoning plan that effectively segregates a project into optimal number of construction zones and to assign the constrained resources (e.g., laborer, equipment).

  • PDF

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss (트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.

A Solar Cell Based Coarse Sun Sensor for a Small LEO Satellite Attitude Determination

  • Zahran, Mohamed;Aly, Mohamed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.631-642
    • /
    • 2009
  • The sun is a useful reference direction because of its brightness relative to other astronomical objects and its relatively small apparent radius as viewed by spacecrafts near the Earth. Most satellites use solar power as a source of energy, and so need to make sure that solar panels are oriented correctly with respect to the sun. Also, some satellites have sensitive instruments that must not be exposed to direct sunlight. For all these reasons, sun sensors are important components in spacecraft attitude determination and control systems. To minimize components and structural mass, some components have multiple purposes. The solar cells will provide power and also be used as coarse sun sensors. A coarse Sun sensor is a low-cost attitude determination sensor suitable for a wide range of space missions. The sensor measures the sun angle in two orthogonal axes. The Sun sensor measures the sun angle in both azimuth and elevation. This paper presents the development of a model to determine the attitude of a small cube-shaped satellite in space relative to the sun's direction. This sensor helps small cube-shaped Pico satellites to perform accurate attitude determination without requiring additional hardware.

Study on Robot Calibration Using Multi-measurement Coordinate System (다중 측정 좌표계를 이용한 로봇 캘리브레이션 방법 연구)

  • Lim, Saeng-Ki;Kim, Jung-Tae;Borm, Jin-Hwan;Choi, Jae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.164-173
    • /
    • 1999
  • Robot calibration needs accurate measurements of robot end-effector position at a number of different robot configurations. One of the efficient ways of the measurement is "Touching on Jig" method suggested in [7], which utilizes a touch sensor and a fixture consisting of various sizes of blocks. By moving the end-effector to touch the surface of a block whose position relative to the other is known, the end-effector position relative to the fixture coordinate system can be obtained at the instant of touching. However, the global size of fixture is too small to cover the various configurations of the robot. Because of the manufacturing difficulties, the fixture cannot be manufactured large enough for well distributed position measurement. It results in the improvement of robot accuracy only in the limited space near to the fixture rather than over the whole space of the robot working volume. The paper proposes a method to resolve the above problem by measuring the end-effector positions with respect to several different coordinate system using the same measurement devices. It is found that the proposed method leads the improvements of robot position accuracy over the large space of working volume. The experimental studies are performed to show the validity of the method and their results are discussed.

  • PDF

Discovery of a New Mechanism of Dust Destruction in Strong Radiation Fields and Implications

  • Hoang, Thiem;Tram, Le Ngoc;Lee, Hyseung;Ahn, Sang-hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.44.3-44.3
    • /
    • 2019
  • Massive stars, supernovae, and kilonovae are among the most luminous radiation sources in the universe. Observations usually show near- to mid-infrared (NIR-MIR, 1-5~micron) emission excess from H II regions around young massive star clusters (YMSCs) and anomalous dust extinction and polarization towards Type Ia supernova (SNe Ia). The popular explanation for such NIR-MIR excess and unusual dust properties is the predominance of small grains (size a<0.05micron) relative to large grains (a>0.1micron) in the local environment of these strong radiation sources. The question of why small grains are predominant in these environments remains a mystery. Here we report a new mechanism of dust destruction based on centrifugal stress within extremely fast rotating grains spun-up by radiative torques, namely the RAdiative Torque Disruption (RATD) mechanism, which can resolve this question. We find that RATD can destroy large grains located within a distance of ~ 1 pc from a massive star of luminosity L~ 10^4L_sun and a supernova. This increases the abundance of small grains relative to large grains and successfully reproduces the observed NIR-MIR excess and anomalous dust extinction/polarization. We show that small grains produced by RATD can also explain the steep far-UV rise in extinction curves toward starburst and high redshift galaxies, as well as the decrease of the escape fraction of Ly-alpha photons observed from HII regions surrounding YMSCs.

  • PDF

Vision-based Ground Test for Active Debris Removal

  • Lim, Seong-Min;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.