• Title/Summary/Keyword: Relative humidity sensor

Search Result 139, Processing Time 0.023 seconds

Development of Capacitance-type Humidity Sensors Using Porous Silicon Layer (다공질 실리콘층을 이용한 정전용량형 습도센서의 개발)

  • Kim, Seong-Jeen;Lee, Ju-Hyuk;Yoon, Yeo-Kyung;Choi, Bok-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1014-1016
    • /
    • 1998
  • A capacitance-type humidity sensor using porous silicon layer is developed. The unique property of this sensor is a structure which has electrodes on the surface of the wafer like a general IC device. To do this. the sensor was fabricated using process such as localized formation of porous silicon, oxidation of porous silicon layer, and etching of oxidized porous silicon layer. The measurement of humidity-sensing ability was done for two type of sensors using porous silicon layer formed in 25 and 35% HF solutions, respectively. As the result, the former sensors showed larger value and variation of capacitance for the relative humidity.

  • PDF

Humidity Sensitive Properties of Humidity Sensor Using Quaternized Cross-linked Copolymers of 4-Vinylpyridine (4차 염화 가교화된 4-vinylpyridine 공중합체들을 사용한 습도센서의 감습 특성)

  • 공명선;이성수;이임렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.302-308
    • /
    • 2001
  • The polymers with various composition of 4-vinylpyridine (4-VP) with n-butyl acrylate (n-BA) and 2-hydroxypropyl methacrylate (HPMA) were synthesized as a humidity sensitive material and quaternized with 1.5-dibromopentane. Resistance versus relative humidity decreased with increase in the content of n-BA in the copolymer. The introduction of HPMA increased the resistance of the humidity sensor as well as enhanced the adherence to the alumina substrate. In the case of 4-VP/n-BA/HPMA=80/10.10, the hysteresis and temperature coefficient were $\pm$2%RH and -0.42∼0.46%RH/$\^{C}$. The average resistance at 30%RH, 60%RH and 90%RH are 3.1㏁, 155 ㏀ and 7.9 ㏀, respectively.

  • PDF

A Study on The Development of Humidity Sensor Using Polyimide Film (폴리이미드 박막을 이용한 습도 센서의 개발에 관한 연구)

  • Jeong, K.H.;Cho, D.H.;Lee, B.S.;Jeong, B.K.;Han, S.O.;Kim, Y.L.;Park, K.S.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1233-1235
    • /
    • 1994
  • In this work, polyimide thin films fabricated by the electrophoretic deposition are investigated as a humidity sensing material. Capacitance and impedance are measured with increasing relative humidity to find the nature of the film. From the results, the polyimide humidity sensor is not classified impedance change type but capacitance change type and appear more sensitive in the region of higher humidity than that of lower humidity.

  • PDF

Humidity Calibration for a Pressure Gauge Using a Temperature-Stable Quartz Oscillator

  • Suzuki, Atsushi
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.124-127
    • /
    • 2016
  • Humidity calibration for a temperature-stable quartz oscillator (TSQO) was investigated to exclude the influences of relative humidity on the TSQO output in order to use the corresponding devices outdoors. The TSQO output is a voltage that is inversely proportional to the electric impedance of the quartz oscillator, which depends on the viscosity and density of the measured gas. The TSQO output was humidity calibrated using its humidity dependence, which was obtained by varying the relative humidity (RH) from 0 to 100 RH% while other conditions were kept constant. The humidity dependencies of the TSQO output were fit by a linear function. Subtracting the change in the TSQO output induced by the change in humidity, calculated with the function from the experimentally measured TSQO output for a range of 0-100RH%, eliminated the influence of humidity on the TSQO output. The humidity calibration succeeded in reducing the fluctuations of the TSQO output from 0.4-3% to 0.1-0.3% of the average values for a range of 0-100RH%, at constant temperatures. The necessary stability of the TSQO output for application in hydrogen sensors was below one-third of the change observed for a hydrogen leakage of 1 vol.% hydrogen concentration, corresponding to 0.33% of the change in each background. Therefore, the results in this study indicate that the present humidity calibration effectively suppresses the influence of humidity, for the TSQO output for use as an outdoor hydrogen sensor.

ANN Modeling of a Gas Sensor

  • Baha, H.;Dibi, Z.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.493-496
    • /
    • 2010
  • At present, Metal Oxide gas Sensors (MOXs) are widely used in gas detection because of its advantages, including high sensitivity and low cost. However, MOX presents well-known problems, including lack of selectivity and environment effect, which has motivated studies on different measurement strategies and signal-processing algorithms. In this paper, we present an artificial neural network (ANN) that models an MOX sensor (TGS822) used in a dynamic environment. This model takes into account dependence in relative humidity and in gas nature. Using MATLAB interface in the design phase and optimization, the proposed model is implemented as a component in an electronic simulator library and accurately expressed the nonlinear character of the response and that its dependence on temperature and relative humidity were higher than gas nature.

The $CH_4$and $C_4$$H_{10}$ Sensitivity Measurement and Voltage Variation Using Catalytic Combustion Type Gas Sensor (접촉연소식 센서를 이용한 $CH_4$$C_4$$H_{10}$ 감도 측정 및 전압변화)

  • 윤헌주;신종열;홍진웅
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.44-48
    • /
    • 2001
  • In this study, we analyzed the $CH_4$and $C_4$$H_{10}$ sensitivity measurement and voltage variation using catalytic type gas sensor characteristics in catalytic combustion type gas detecter sensors. Gas detector shall operate as intended when exposed for 24 hours to air having a relative humidity of 65 percent at a temperature of $20^{\circ}c$ and humidity of 85 percent at a temperature of $40^{\circ}c$. The gas detecter sensors are to be subjected to operation for 210 days in an area that has been determined to be equivalent to a typical residential atmosphere with an air velocity of 50 cm/sec. The source of energy for a gas detector sensors employing a supplementary basic circuit is energized from a seperate source of supply direct applied voltage 2.1V, 2.2V, 2.3V. As a result, it was confirmed that the relative humidity and temperature by regression each analysis, compared to the isobutane characteristic graph and methane characteristic graph by a relative humidity of 65% and 85% at a temperature($20^{\circ}c$, $40^{\circ}c$) show a similar linear pattern on the whore.

  • PDF

Capacitive Humidity Sensor Using Reactive Methacrylate Copolymers (반응성이 있는 메타크릴레이트 공중합체를 이용한 정전용량형 습도센서)

  • 공명선;이임렬
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.21-27
    • /
    • 2003
  • The copolymers with various composition of methyl methacrylate (MMA), ethyl methacrylate (EMA), methacrylic acid (MA) and hydroxyethyl methacrylate (HEMA) were synthesized for capacitive humidity sensitive materials. The capacitive humidity sensor consisted of a polymethacrylate film coated on both sides with gold electrode. Capacitance versus relative humidity increased with HEMA content in the copolymer. In the case of self-crosslinkable MMA/MA/HEHA= 40/10/10, the average capacitance at 30%RH, 60%RH and 90%RH are 102, 134 and 166 pF, respectively. And also, the hysteresis, temperature cycle and long-term stability were evaluated as a capacitance humidity sensor.

  • PDF

Development of Ceramic Humidity Sensor for the Korean Next Generation Reactor

  • Lee, Na-Young;Hwang, Il-Soon;Yoo, Han-Ill;Song, Chang-Rock;Park, Sang duk;Yang, Jun-Seog
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.199-206
    • /
    • 1997
  • For the Korean Next Generation Reactor(KNGR) development, LBB is considered for the Main Steam Line(MSL) piping inside its containment to achieve cost and safety Improvement. To apply LBB concept to MSL, leak sensors highly sensitive to humidity is required. In this paper, a ceramic material, MgCr$_2$O$_4$-TiO$_2$ has been developed as a humidity sensor for MSL applications. Experiments peformed to characterize the electrical conductivity shows that the conductivity of MgCr$_2$O$_4$-TiO$_2$ responds sensitively to both temperature and humidity changes. At a constant temperature below 10$0^{\circ}C$, the conductivity increases as the relative humidity increases, which makes the sensor favorable for application to the outside of MSL insulation layer But as temperature increases beyond 10$0^{\circ}C$, the sensor composition should be adjusted for the application to KNGR is to be made at temperature above 10$0^{\circ}C$.

  • PDF

AN APPLICATION OF PLASMA-POLYMERIZED YbPc$_2$ FILM: HUMIDITY SENSOR

  • Yamana, Masao;Kashiwazaki, Naoya
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.703-708
    • /
    • 1996
  • Humidity sensing cheracterisrics of vacuum deposited plasma poly merized $YbPc_2$ films were evaluated. In both films, humidity caused an increase of pro-ton conduction. Polymerised film shows a threshold fo humidity increase and its sensitivity diminishes more than $38^{\circ}C$ of relative humidity. Furthermore, for the polymerized film, two min. of resssponse time and 1 min. of recovery time are also obtained. The sensitivity between 10% and 85% of relative hum-idities is found to be one hundred higher than that of the vacuum deposited film.

  • PDF

Performance of Differential Field Effect Transistors with Porous Gate Metal for Humidity Sensors

  • Lee, Sung-Pil;Chowdhury, Shaestagir
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.434-439
    • /
    • 1999
  • Differential field effect transistors with double gate metal for integrated humidity sensors have been fabricated and the drain current drift characteristics to relative humidity have been investigated. The aspect ratio was 250/50 for both transistors to get the current difference between the sensing device and non-sensing one. The normalized drain current of the fabricated humidity sensitive field effect transistors increases from 0.12 to 0.3, as relative humidity increases from 30% to 90%.

  • PDF