DOI QR코드

DOI QR Code

Humidity Calibration for a Pressure Gauge Using a Temperature-Stable Quartz Oscillator

  • Suzuki, Atsushi (National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2016.10.31
  • Accepted : 2016.11.18
  • Published : 2016.11.30

Abstract

Humidity calibration for a temperature-stable quartz oscillator (TSQO) was investigated to exclude the influences of relative humidity on the TSQO output in order to use the corresponding devices outdoors. The TSQO output is a voltage that is inversely proportional to the electric impedance of the quartz oscillator, which depends on the viscosity and density of the measured gas. The TSQO output was humidity calibrated using its humidity dependence, which was obtained by varying the relative humidity (RH) from 0 to 100 RH% while other conditions were kept constant. The humidity dependencies of the TSQO output were fit by a linear function. Subtracting the change in the TSQO output induced by the change in humidity, calculated with the function from the experimentally measured TSQO output for a range of 0-100RH%, eliminated the influence of humidity on the TSQO output. The humidity calibration succeeded in reducing the fluctuations of the TSQO output from 0.4-3% to 0.1-0.3% of the average values for a range of 0-100RH%, at constant temperatures. The necessary stability of the TSQO output for application in hydrogen sensors was below one-third of the change observed for a hydrogen leakage of 1 vol.% hydrogen concentration, corresponding to 0.33% of the change in each background. Therefore, the results in this study indicate that the present humidity calibration effectively suppresses the influence of humidity, for the TSQO output for use as an outdoor hydrogen sensor.

Keywords

References

  1. K. Kokubun, M. Hirata, H. Murakami, Y. Toda, and M. Ono, Vacuum 34 731 (1984). https://doi.org/10.1016/0042-207X(84)90318-X
  2. A. Kurokawa, K. Odaka, and S. Ichimura, Vacuum 73 301 (2004). https://doi.org/10.1016/j.vacuum.2003.12.018
  3. A. Suzuki, A. Kurokawa, H. Nonaka, and S. Ichimura, Sens. Actuators, A 127 37 (2006). https://doi.org/10.1016/j.sna.2005.11.009
  4. A. Suzuki and H. Nonaka, Jpn. J. Appl. Phys. 47 3661 (2008). https://doi.org/10.1143/JJAP.47.3661
  5. A. Suzuki and H. Nonaka, Int. J. Hydrogen Energy 33 6385 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.051
  6. A. Suzuki, A. Kurokawa, and H. Nonaka, Plasma Monitoring Using a Quartz Sensor, Proc. 18th Int. Symp. Pla. Chem., 2008, p. 30P.
  7. A. Suzuki and H. Nonaka, Rev. Sci. Instrum. 80 095109 (2009). https://doi.org/10.1063/1.3223345
  8. A. Suzuki and H. Nonaka, Vacuum 84 554 (2009). https://doi.org/10.1016/j.vacuum.2009.06.037
  9. A. Suzuki and H. Nonaka, Measurement for Dissociation Ratio of Ammonia in Plasmas Using a Quartz Sensor, Proceedings of 27th Symposium on Plasma Processing, 2010, p. A5.
  10. A. Suzuki and H. Nonaka, Vacuum 84 1389 (2010). https://doi.org/10.1016/j.vacuum.2010.01.004
  11. A. Suzuki and H. Nonaka, Jpn. J. Appl. Phys. 50 01AA03 (2011). https://doi.org/10.7567/JJAP.50.01AA03
  12. A. Suzuki, Hydrogen Sensing Characteristics of a Quartz Oscillator, 2012.
  13. A. Suzuki and S. Asahina, Jpn. J. Appl. Phys. 51 01AA03 (2012). https://doi.org/10.7567/JJAP.51.01AA03
  14. A. Suzuki and S. Asahina, Pressure dependence of optical emissions in nitrogen-hydrogen plasmas, Proceedings of 30th Symposium on Plasma Processing, 2013, p. A4.
  15. A. Suzuki and S. Asahina, Jpn. J. Appl. Phys. 52 in press. (2013).
  16. A. Suzuki and S. Asahina, Spatial distributions of non-molecular species in N2-H2 plasmas measured by a quartz oscillator, Proc. 21st Int. Symp. Pla. Chem., 2013, p. 303.
  17. A. Suzuki and S. Asahina, Jpn. J. Appl. Phys. 52 11NC04 (2013). https://doi.org/10.7567/JJAP.52.11NC04
  18. A. Suzuki and S. Asahina, Jpn. J. Appl. Phys. 53 11RC03 (2014). https://doi.org/10.7567/JJAP.53.11RC03
  19. A. Suzuki, H. Hojo, and T. Kobayashi, Vacuum 121 255 (2015). https://doi.org/10.1016/j.vacuum.2015.03.020
  20. A. Suzuki, J. Vac. Sci. Technol. A 34 031604 (2016). https://doi.org/10.1116/1.4946757
  21. B. Dulmet and R. Bourquin, Revue De Physique Appliquee 18 619 (1983). https://doi.org/10.1051/rphysap:019830018010061900
  22. I. F. Golubev, Viscosity of gases and gas mixtures, A Handbook, Israel Program for Scientific Translations, Jerusalem, 1970.
  23. O. Tetens and Z. Geophys. 6 297 (1930).